27

When we canonically quantize the scalar field in QFT, we use a Lorentz invariant integration measure given by $$\widetilde{dk} \equiv \frac{d^3k}{(2\pi)^3 2\omega(\textbf{k})}.$$

How can I show that it is Lorentz invariant?

Qmechanic
  • 220,844
rainman
  • 3,083
  • 4
  • 37
  • 58

1 Answers1

28

To show that this measure is Lorentz invariant you first need to explicitly write your integral as an integral over mass shell in 4D k-space. This could be done by inserting Dirac delta function $\delta[k^\mu k_\mu-m^2]$ and integrating over the whole 4D space.

Then you could apply the following transformations: \begin{align} \theta(k_0)\cdot\delta[k^\mu k_\mu-m^2] &= \theta(k_0)\cdot\delta[k_0^2-|\mathbf{k}|^2-m^2]\\ &=\theta(k_0)\cdot\delta\left[(k_0-\sqrt{|\mathbf{k}|^2+m^2})(k_0+\sqrt{|\mathbf{k}|^2+m^2})\right]\\ &=\frac{\delta\left[k_0-\sqrt{|\mathbf{k}|^2+m^2}\right]}{2\,k_0}, \end{align} where Heaviside function $\theta(k_0)$ is used to select only future part of the mass shell.

user23660
  • 5,927