The solution to time dependent hamiltonian equation is: $$\frac{\partial}{\partial t}U(t) = -\frac{i}{\hbar}H(t)U(t)$$
The immediate integral form solution is
- $U(t) = I - \frac{i}{\hbar}\int_{0}^{t}H(t')U(t')dt'$
having used $U(0) = I$. I have some trouble deriving this solution. Why the time-ordering is absent in the RHS integral, but have to be present in the formal solution:
$$\mathcal{T}\left\{e^{-\frac{i}{\hbar}\int_{0}^{t}H(t')dt'}\right\} = \sum_{n=0}^{\infty}\frac{1}{n!}\left(-\frac{i}{\hbar}\right)^{n}\mathcal{T} \left\{\left(\int_{0}^{t}H(t')dt'\right)^n\right\}$$
- What is the first and second derivative with respect to time of $\mathcal{T}\left\{e^{-\frac{i}{\hbar}\int_{0}^{t}H(t')dt'}\right\}$, (which is essentially $e^{-\frac{i}{\hbar}\mathcal{T}\int_{0}^{t}H(t')dt'}$)? At first glance, they are:
1st derivative: $\mathcal{T} \left(\int_{0}^{t}H(t')dt'\right)e^{-\frac{i}{\hbar}\mathcal{T}\int_{0}^{t}H(t')dt}$
2nd derivative: $\mathcal{T} \left(\int_{0}^{t}H(t')dt'\right) \mathcal{T} \left(\int_{0}^{t}H(t')dt'\right)e^{-\frac{i}{\hbar}\mathcal{T}\int_{0}^{t}H(t')dt}$.
However, I doubt that. I think in the second derivative, the 2nd derivative should have an additional time-ordering:
$$\mathcal{T}(\mathcal{T} \left(\int_{0}^{t}H(t')dt'\right) \mathcal{T} \left(\int_{0}^{t}H(t'')dt''\right))e^{-\frac{i}{\hbar}\mathcal{T}\int_{0}^{t}H(t')dt}$$. Is my thinking right?
P.S. My argument comes from that $$I - \frac{i}{\hbar} \int_{0}^{t} dt' H(t') + \left(-\frac{i}{\hbar}\right)^2 \frac{1}{2} \mathcal{T}\left(\int_{0}^{t} dt' H(t')\right)^2+ \left(-\frac{i}{\hbar}\right)^3 \mathcal{T}\left(\frac{1}{3!}\left(\int_{0}^{t} dt' H(t')\right)^3\right) ...$$ is the same as $$I - \frac{i}{\hbar}\int_{0}^{t}dt' H(t') + \left(-\frac{i}{\hbar}\right)^2 \int_{0}^{t}dt' \int_{0}^{t'}dt'' H(t') H(t'')\\ + \left(-\frac{i}{\hbar}\right)^3 \int_{0}^{t}dt' \int_{0}^{t'}dt'' \int_{0}^{t''}dt''' H(t') H(t'') H(t''') + ...$$