$$ \left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right]\langle x \mid E\rangle=E\langle x \mid E\rangle $$ is often referred to as the time-independent Schrödinger equation in position space. This equation also results from projecting the energy eigenvalue equation $$ \hat{H}|E\rangle=E|E\rangle $$ into position space: $$ \langle x|\hat{H}| E\rangle=E\langle x \mid E\rangle $$
How is $$ \left[-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right]\langle x \mid E\rangle= \langle x|\hat{H}| E\rangle~?$$