By linearity of expection and using the distributive property:
$$\begin{align} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) &= \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \left( \sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta} (\mathbf{a}_t \mid \mathbf{s}_t) \right) \left( \sum_{t=1}^T r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right] \\ &= \sum_{t=1}^T \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \nabla_{\theta} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \sum_{t'=1}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right] \\ &= \sum_{t=1}^T \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \nabla_{\theta} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \sum_{t'=1}^{t-1} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) +\nabla_{\theta} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right] \\ & = \sum_{t=1}^T \sum_{t'=1}^{t-1}\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \, r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right] +\sum_{t=1}^T \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \,\sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right]\\ \end{align}$$
and the first term can be further expanded as follows:
$$\begin{align} &\sum_{t=1}^T \sum_{t'=1}^{t-1}\mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \, r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right] \\ = &\sum_{t=1}^T \sum_{t'=1}^{t-1} \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{s}_{t'}, \mathbf{a}_{t'}) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{s}_{t'}, \mathbf{a}_{t'})} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \, r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right] \\ = &\sum_{t=1}^T \sum_{t'=1}^{t-1} \mathbb{E}_{(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_{t'}, \mathbf{a}_{t'})} \left[\mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t} \mid \mathbf{s}_{t'}, \mathbf{a}_{t'})} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \, r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right] \right] \\ = &\sum_{t=1}^T \sum_{t'=1}^{t-1} \mathbb{E}_{(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_{t'}, \mathbf{a}_{t'})} \left[ r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \; \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t} \mid \mathbf{s}_{t'}, \mathbf{a}_{t'})} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \,\right] \right] \\ \end{align}
$$
The innermost expectation can be broken down further into
$$\mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\boldsymbol{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t} \mid \mathbf{s}_{t'}, \mathbf{a}_{t'})} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \right]\\ = \int \int \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \,\pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \, \, p(\mathbf{s}_{t} \mid \mathbf{s}_{t'}, \mathbf{a}_{t'})\, d\mathbf{a}_t \; d \mathbf{s}_t \\
= \int p(\mathbf{s}_{t} \mid \mathbf{s}_{t'}, \mathbf{a}_{t'}) \int \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \,\pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \, d\mathbf{a}_t \; d \mathbf{s}_t$$
where $ \int \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \,\pi_{\boldsymbol{\theta}}(\mathbf{a}_t \mid \mathbf{s}_t) \, d\mathbf{a}_t = \mathbb{E}_{ \mathbf{a}_{t} \sim \pi_{\boldsymbol{\theta}}( \mathbf{a}_{t} \mid \mathbf{s}_{t})} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \right] =0$ due to the EGLP lemma
As a result, we have
$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \sum_{t=1}^T \mathbb{E}_{\tau \sim p_{\boldsymbol{\theta}}(\tau)} \left[ \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}} (\mathbf{a}_t \mid \mathbf{s}_t) \,\sum_{t'=t}^T r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right]
$$