University of Florida/Egm6321
              < University of Florida 
 
 
            
          EGM 6321 - Principles of Engineering Analysis I
Solution of linear and nonlinear ordinary differential equations. Methods of Frobenius, classification of singularities. Integral representation of solutions. Treatment of the Bessel, Hermite, Legendre, hypergeometric, and Mathieu equations. Asymptotic methods including the WBK and saddle point techniques. Treatment of nonlinear autonomous equations. Phase plane trajectories and limit cycles. Thomas-Fermi, Emden, and van der Pol equations.[1]
Subpages
- F10.TEAM1.WILKS/Mtg1
- F10.TEAM1.WILKS/Mtg13
- F10.TEAM1.WILKS/Mtg15
- F10.TEAM1.WILKS/Mtg17
- F10.TEAM1.WILKS/Mtg19
- F10.TEAM1.WILKS/Mtg21
- F10.TEAM1.WILKS/Mtg23
- F10.TEAM1.WILKS/Mtg25
- F10.TEAM1.WILKS/Mtg3
- F10.TEAM1.WILKS/Mtg33
- F10.TEAM1.WILKS/Mtg35
- F10.TEAM1.WILKS/Mtg37
- F10.TEAM1.WILKS/Mtg39
- F10.TEAM1.WILKS/Mtg41
- F10.TEAM1.WILKS/Mtg5
- F10.TEAM1.WILKS/Mtg7
- F10.TEAM1.WILKS/Mtg9
- f09.Team2/HW2
- f09.Team2/HW3
- f09.team1.gzc/Mtg10
- f09.team1.gzc/Mtg12
- f09.team1.gzc/Mtg20
- f09.team1.gzc/Mtg22
- f09.team1.gzc/Mtg30
- f09.team1.gzc/Mtg34
- f09.team1.gzc/Mtg36
- f09.team1.gzc/Mtg6
- f09.team1.gzc/Mtg8
- f10.team03/Hwk1
- f12.Rep5hid
- f12.team5.R1.6