Mtg 8: Wed, 19 Jan 11
page8-1
Legendre poly. Pn(x):
![{\displaystyle {P}_{n}(x)=\sum _{i=0}^{\color {red}[{\color {black}n/2}]}{(-1)}^{i}{\frac {(2n-2i)!{x}^{n-2i}}{{2}^{n}i!(n-i)!(n-2i)!}}}](../../../5bea1b6b3cf6ecd899da0cb7507c35e08f0ff112.svg) |
(1) |
![{\displaystyle {\color {red}[{\color {black}n/2}]}=integer\ part\ of\ n/2}](../../../fa62578f6794ad7c7ae9b2218577ed03ce2df12d.svg) |
(2) |
e.g., m = 5 , n/2 = 2.5 , [2.5] = 2
HW 2.6: Verify(3)-(7) using(1)-(2)
page8-2
Weights wi , i = 1,...,n ((1) p.7-5)
Thm:
![{\displaystyle \xi \in [-1,1]}](../../../df3cb69ecb0c91502f24f927c941372006d26211.svg) |
|



page8-3


:=I({f}_{n}^{\color {red}L})=\int {f}_{n}^{\color {red}L}(x)dx\ \color {red}(1)}


NOTE: Demonstrated Wolfram Alpha(WA) e.g., (debt usa)/(gdp usa) integrate x from 0 to 1 link WA comp. results in HW reportsAvoid plagiarism
