EGM6321 - Principles of Engineering Analysis 1, Fall 2009
Mtg 37: Thurs, 17Nov09
P.36-4 continued
From P.18-1 :
 |
(1) |
HW show
ref K p33 for
 |
(2) |
is odd
HW: Use Eq(2) to show when
is even or odd, depending on "n"
HW: Plot
and
Legendre function
or
solution of Legendre solution
 |
(1) |
for
for
for
HW
Eq.(3) P.33-1
for
Proof: Legendre equation, Eq.(1) P.14-2 : 2)
Where
![{\displaystyle \displaystyle {\begin{aligned}\left[(1-x^{2})y'\right]'=(1-x^{2})y''-2xy'\end{aligned}}}](../../../9481066a4470dd9a91566f202cdcd90538d14c20.svg) |
(2) |
Multiply by
and integrate from -1 to +1:
Where ![{\displaystyle L_{m}\left[(1-x^{2})L_{n}'\right]'=\alpha \ \ }](../../../e2142171c5668d63b5cd659a17b4f5c652decc32.svg)
Integrate
by parts:
 |
(1) |
Interchange n and m:
 |
(2) |
Eq(1)-Eq(2):
Where
since
when
cf.K.p41