2

I need to calculate the Kraus operators for a 1-qubit operation given in environment form ${\rm tr}_E(U((\cdot)\otimes|\psi\rangle\langle \psi|)U^\dagger)$, where the environment is one qubit as well. The unitary operator $U$ acts like \begin{align*} U|00\rangle &= |00\rangle\\ U|10\rangle &= \sqrt{1-\gamma}|10\rangle + \sqrt{\gamma}|01\rangle\\ U|01\rangle &= \sqrt{1-\gamma}|01\rangle - \sqrt{\gamma}|10\rangle\\ U|11\rangle &= |11\rangle \end{align*} with $\gamma$ between $0$ and $1$. The initial state of the environment is: $$|\psi\rangle=\sqrt{1-p}|0\rangle + \sqrt p|1\rangle\quad \text{with } 0 \leq p \leq 1$$

When trying to solve this I got the Kraus operators \begin{align*} E_0&=\sqrt{1-p}\begin{pmatrix}1 &0\\0& \sqrt{1-\gamma}\end{pmatrix}\\ E_1&=\sqrt{\gamma p}\begin{pmatrix}0 &1\\ 0& 0\end{pmatrix}\\ E_2&=\sqrt{\gamma(1-p)}\begin{pmatrix} 0& 0\\ 1& 0\end{pmatrix}\\ E_3&=\sqrt{p}\begin{pmatrix}\sqrt{1-\gamma} &0\\ 0 &1\end{pmatrix} \end{align*} But these operators are wrong.

Frederik vom Ende
  • 4,163
  • 3
  • 12
  • 49
abelix9
  • 21
  • 3

1 Answers1

4

To find the Kraus operators from the environmental form it is useful to introduce the operator $\iota_\phi:={\bf1}\otimes|\phi\rangle$ (with $|\phi\rangle\in\mathbb C^2$ is arbitrary; acts like $\iota_\phi(|x\rangle)=|x\rangle\otimes|\phi\rangle$) because then

  • $A\otimes|\phi\rangle\langle\phi|=\iota_\phi A\iota_\phi^\dagger$ for all $A\in\mathbb C^{2\times 2}$, and
  • ${\rm tr}_E(B)=\iota_0 B\iota_0^\dagger+\iota_1 B\iota_1^\dagger$ for all $B\in\mathbb C^2\otimes\mathbb C^2$.

This way, one finds that $\{E_0,E_1\}:=\{\iota_0^\dagger U\iota_\psi,\iota_1^\dagger U\iota_\psi\}$ are Kraus operators of ${\rm tr}_E(U((\cdot)\otimes|\psi\rangle\langle \psi|)U^\dagger)=E_0(\cdot)E_0^\dagger+E_1(\cdot)E_1^\dagger$. For more on this formalism refer to Chapter 8.2.3 in the book "Quantum Computation and Quantum Information" of Nielsen and Chuang (alt link).

To determine the matrix form of these Kraus operators we can just insert the matrix forms of $U$, $\iota$: \begin{align*} E_0&=\iota_0^\dagger U\iota_\psi=\big({\bf1}\otimes|0\rangle\big)^\dagger U\big({\bf1}\otimes |\psi\rangle\big)\\ &=\Big(\begin{pmatrix}1&0\\0&1\end{pmatrix}\otimes\begin{pmatrix}1&0\end{pmatrix}\Big)\begin{pmatrix}1&0&0&0\\ 0&\sqrt{1-\gamma}&\sqrt\gamma&0 \\ 0&-\sqrt\gamma&\sqrt{1-\gamma}&0 \\0&0&0&1 \end{pmatrix}\Big(\begin{pmatrix}1&0\\0&1\end{pmatrix}\otimes\begin{pmatrix}\sqrt{1-p}\\\sqrt p\end{pmatrix}\Big)\\ &=\begin{pmatrix}1&0&0&0\\0&0&1&0\end{pmatrix}\begin{pmatrix}1&0&0&0\\ 0&\sqrt{1-\gamma}&\sqrt\gamma&0 \\ 0&-\sqrt\gamma&\sqrt{1-\gamma}&0 \\0&0&0&1 \end{pmatrix}\begin{pmatrix}\sqrt{1-p}&0\\\sqrt p&0\\0&\sqrt{1-p}\\0&\sqrt p\end{pmatrix}\\ &=\begin{pmatrix}1&0&0&0\\0&0&1&0\end{pmatrix}\begin{pmatrix} \sqrt{1-p}&0\\ \sqrt{(1-\gamma)p}&\sqrt{\gamma(1-p)}\\ -\sqrt{\gamma p}&\sqrt{(1-\gamma)(1-p)}\\ 0&\sqrt p \end{pmatrix}\\ &=\begin{pmatrix} \sqrt{1-p}&0\\ -\sqrt{\gamma p}&\sqrt{(1-\gamma)(1-p)} \end{pmatrix} \end{align*} Analogously one finds $$ E_1=\begin{pmatrix} \sqrt{(1-\gamma)p}&\sqrt{\gamma(1-p)}\\0&\sqrt p \end{pmatrix}. $$

Frederik vom Ende
  • 4,163
  • 3
  • 12
  • 49