2

Let $\rho, \sigma$ be two states of a qubit, and let $U$ be the $CX_{12}$-gate (control on 1st qubit, target on 2nd qubit). Prove that, for an arbitrary CPTP Map $\mathcal{E}$, $$ \|\mathcal{E}(\rho - \sigma)\|_1 \leq \|(\mathcal{E}\otimes{\rm id})\left(U\left\{(\rho - \sigma)\otimes |0\rangle\langle 0|\right\}U^{\dagger}\right)\|_1 $$

where, $\|A\|_1 = \rm{Tr}(|A|) = \rm{Tr}(\sqrt{A^{\dagger}A})$ is the Trace-Norm of $A$.

Generalization:
What conditions does $U$ need to satisfy in general so that this inequality holds for arbitrary states $\rho, \sigma$ and arbitrary CPTP Maps $\mathcal{E}$ ?

glS
  • 27,510
  • 7
  • 37
  • 125

1 Answers1

2

tl;dr: The inequality in its current form is wrong, although a weaker version of it (where the right-hand side has an additional factor of $2$) holds true.

For a counterexample to the inequality as stated—found by means of simple numerics—consider the (unital) quantum channel $\mathcal E$ defined by its Pauli transfer matrix $$ \mathsf P(\mathcal E)=\begin{pmatrix} 1&0&0&0\\ 0&3/5&0&-4/5\\ 0&0&0&0\\ 0&0&0&0 \end{pmatrix}\,; $$ equivalently, its Choi matrix reads $$ \mathsf C(\mathcal E)=\begin{pmatrix} \frac{1}{2} & -\frac{2}{5} & 0 & \frac{3}{10} \\ -\frac{2}{5} & \frac{1}{2} & \frac{3}{10} & 0 \\ 0 & \frac{3}{10} & \frac{1}{2} & \frac{2}{5} \\ \frac{3}{10} & 0 & \frac{2}{5} & \frac{1}{2} \end{pmatrix} $$ so $\mathcal E$ is completely positive as $\mathsf C(\mathcal E)$ has eigenvalues $1$ (2-fold) and $0$ (2-fold). Next consider the (pure) states \begin{align*} \rho=\begin{pmatrix} \frac14&\frac{\sqrt3}4\\ \frac{\sqrt3}4&\frac34 \end{pmatrix}\qquad\text{ and }\qquad\sigma= \begin{pmatrix} 1&0\\0&0 \end{pmatrix} \end{align*} so \begin{align*} \|\mathcal E(\rho-\sigma)\|_1&= \Big\|\mathcal E\begin{pmatrix} -\frac34&\frac{\sqrt3}4\\ \frac{\sqrt3}4&\frac34 \end{pmatrix} \Big\|_1\\ &= \Big\|\Big(\frac{3 \sqrt{3}}{20}+\frac35\Big)\sigma_x\Big\|_1=\frac{3 \sqrt{3}}{10}+\frac{6}{5}\approx 1.71962\,. \end{align*} On the other hand using the matrix form of the CNOT we compute \begin{align*} \|(\mathcal{E}\otimes\,&{\rm id})(U((\rho - \sigma)\otimes |0\rangle\langle 0|)U^{\dagger})\|_1\\ &=\Big\|(\mathcal{E}\otimes{\rm id})\Big(\begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix} \begin{pmatrix} -\frac34&0&\frac{\sqrt3}4&0\\ 0&0&0&0\\ \frac{\sqrt3}4&0&\frac34&0\\ 0&0&0&0\end{pmatrix} \begin{pmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}\Big)\Big\|_1\\ &=\Big\|(\mathcal{E}\otimes{\rm id}) \begin{pmatrix} -\frac34&0&0&\frac{\sqrt3}4\\ 0&0&0&0\\ 0&0&0&0\\ \frac{\sqrt3}4&0&0&\frac34\end{pmatrix} \Big\|_1\\ &=\Big\|\begin{pmatrix} -\frac{3}{8} & 0 & \frac{3}{10} & \frac{3 \sqrt{3}}{40} \\ 0 & \frac{3}{8} & \frac{3 \sqrt{3}}{40} & \frac{3}{10} \\ \frac{3}{10} & \frac{3 \sqrt{3}}{40} & -\frac{3}{8} & 0 \\ \frac{3 \sqrt{3}}{40} & \frac{3}{10} & 0 & \frac{3}{8} \end{pmatrix}\Big\|_1\\ &=\frac{3\sqrt7}5\approx1.58745 \end{align*} which is strictly smaller than $\|\mathcal E(\rho-\sigma)\|_1\approx 1.71962$, a contradiction.

Now for the promised weaker bound: for all linear maps $\mathcal E:\mathbb C^{2\times 2}\to\mathbb C^{2\times 2}$ and all $X\in\mathbb C^{2\times 2}$ it holds that $$ \boxed{\|\mathcal E(X)\|_1\leq2\|(\mathcal{E}\otimes{\rm id})(U(X\otimes |0\rangle\langle 0|)U^{\dagger})\|_1}\,.\tag0 $$ In particular this holds when $\mathcal E$ is CPTP and $X=\rho-\sigma$ is the difference of any two states. This is a direct consequence of the following identity:$$ {\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big((\mathcal E\otimes{\rm id})(U(X\otimes |0\rangle\langle 0|)U^\dagger)\big)=\mathcal E(X)\tag1 $$ where $|{\bf e}\rangle:=|0\rangle+|1\rangle$ and ${\rm tr}_{2,Y}$ for any $Y$ is defined via ${\rm tr}_{2,Y}(A\otimes B):=A\,{\rm tr}(BY)$ for all $A,B$.

Proof of Eq.(1). Using $U=|0\rangle\langle 0|\otimes{\bf1}+|1\rangle\langle 1|\otimes\sigma_x$ we compute \begin{align*} &{\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big((\mathcal E\otimes{\rm id})(U(X\otimes |0\rangle\langle 0|)U^\dagger)\big)\\ &= {\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big((\mathcal E\otimes{\rm id})(|0\rangle\langle 0|X|0\rangle\langle 0|\otimes |0\rangle\langle 0|+ |0\rangle\langle 0|X|1\rangle\langle 1|\otimes |0\rangle\langle 1|\\ &\qquad+|1\rangle\langle 1|X|0\rangle\langle 0|\otimes |1\rangle\langle 0|+ |1\rangle\langle 1|X|1\rangle\langle 1|\otimes |1\rangle\langle 1|)U^\dagger)\big) \\ &=\langle 0|X|0\rangle {\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big(\mathcal E(|0\rangle\langle 0|)\otimes|0\rangle\langle 0|\big) +\langle 0|X|1\rangle {\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big(\mathcal E(|0\rangle\langle 1|)\otimes|0\rangle\langle 1|\big)\\ &\qquad +\langle 1|X|0\rangle {\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big(\mathcal E(|1\rangle\langle 0|)\otimes|1\rangle\langle 0|\big) +\langle 1|X|1\rangle {\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big(\mathcal E(|1\rangle\langle 1|)\otimes|1\rangle\langle 1|\big)\\ &=\langle 0|X|0\rangle\mathcal E(|0\rangle\langle 0|)\langle{\bf e}|0\rangle\langle 0|{\bf e}\rangle+\langle 0|X|1\rangle\mathcal E(|0\rangle\langle 1|)\langle{\bf e}|0\rangle\langle 1|{\bf e}\rangle\\ &\qquad \langle 1|X|0\rangle\mathcal E(|1\rangle\langle 0|)\langle{\bf e}|1\rangle\langle 0|{\bf e}\rangle+\langle 1|X|1\rangle\mathcal E(|1\rangle\langle 1|)\langle{\bf e}|1\rangle\langle 1|{\bf e}\rangle\\ &=\mathcal E\big( |0 \rangle\langle 0|X|0 \rangle\langle0 |+ |0 \rangle\langle 0|X|1 \rangle\langle1 |+ |1 \rangle\langle 1|X|0 \rangle\langle0 |+ |1 \rangle\langle 1|X|1 \rangle\langle1 | \big)=\mathcal E(X)\tag*{$\square$} \end{align*} From (1) it immediately follows that \begin{align*} \|\mathcal E(X)\|_1&=\big\|{\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\big((\mathcal E\otimes{\rm id})(U(X\otimes |0\rangle\langle 0|)U^\dagger)\big)\big\|_1\\ &\leq\|{\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\|_{1\to1}\big\|(\mathcal E\otimes{\rm id})(U(X\otimes |0\rangle\langle 0|)U^\dagger)\big\|_1 \end{align*} This would imply (0) once we can show that $\|{\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}\|_{1\to1}=2$. Indeed, imitating the standard computation that the usual partial trace is trace-norm contractive this follows from the fact that the adjoint channel of ${\rm tr}_{2,|{\bf e}\rangle\langle{\bf e}|}$ is $X\mapsto X\otimes|{\bf e}\rangle\langle{\bf e}|$ together with the readily verified fact that $\||{\bf e}\rangle\langle{\bf e}|\|_\infty=\|{\bf e}\|^2=\langle{\bf e}|{\bf e}\rangle=2$.

Frederik vom Ende
  • 4,163
  • 3
  • 12
  • 49