1

I know how the operator norms $\| X\|_{1}$,$\| X\|_{2}$, and $\| X\|_{\infty}$ are defined for any operator $X\in B(\mathcal{H})$. My question is about how to view$\| T(X)\|_{1}$,$\| T(X)\|_{2}$, and $\| T(X)\|_{\infty}$, when T is a quantum channel.

Espescially when we use the open-system representation $T(X)=Tr_{AE}(U(X\otimes |\psi_{AE}\rangle\langle\psi_{AE}|))U^{\dagger})$. For the 1-norm my intuition is:

I assume that since T is CP, it is self-adjoint. So for example the one norm becomes: $$\| T(X)\|_{1} =\| Tr_{AE}(U(X\otimes |\psi_{AE}\rangle\langle\psi_{AE}|))U^{\dagger})\|_{1}=Tr(Tr_{AE}(U(X\otimes |\psi_{AE}\rangle\langle\psi_{AE}|))U^{\dagger}))=Tr(U(X\otimes |\psi_{AE}\rangle\langle\psi_{AE}|))U^{\dagger})=Tr(X\otimes |\psi_{AE}\rangle\langle\psi_{AE}|)=Tr(X)Tr(|\psi_{AE}\rangle\langle\psi_{AE}|)=Tr(X). $$

But for the 2-norm and sup-norm I have no idea.

PS:

The question stems from trying to show $\|T(X)\|_{1}\leq \|X\|_{1}$ using open system representation, and then if this also holds for the 2 and the sup-norm.

Pink Elephants
  • 335
  • 1
  • 8

1 Answers1

4

First, let us prove that every quantum channel is trace-norm contractive using the unitary Stinespring representation. For this we need the following lemma.

Lemma. For all $m,n\in\mathbb N$ and all $Z\in\mathbb C^{n\times n}\otimes\mathbb C^{m\times m}$ it holds that $\|{\rm tr}_2(Z)\|_1\leq\|Z\|_1$.

Proof. The easiest way to show this is to go via the adjoint channel/dual channel, that is, the fact that ${\rm tr}({\rm tr}_2(Z)Y)={\rm tr}(Z(Y\otimes{\bf1}))$ for all $Z\in\mathbb C^{n\times n}\otimes\mathbb C^{m\times m}$, $Y\in\mathbb C^{n\times n}$. This simplifies the norm computation by the duality of the trace norm and the $\infty$-norm: \begin{align*} \|{\rm tr}_2(Z)\|_1&={\rm sup}_{Y\in\mathbb C^{m\times m},\|Y\|_\infty=1}|{\rm tr}({\rm tr}_2(Z)Y) )|\\ &={\rm sup}_{Y\in\mathbb C^{m\times m},\|Y\|_\infty=1}|{\rm tr}(Z(Y\otimes{\bf1}))|\\ &\leq{\rm sup}_{Y\in\mathbb C^{m\times m},\|Y\|_\infty=1}\|Z\|_1\|Y\otimes{\bf1}\|_\infty\\ &={\rm sup}_{Y\in\mathbb C^{m\times m},\|Y\|_\infty=1}\|Z\|_1\|Y\|_\infty\|{\bf1}\|_\infty=\|Z\|_1\,. \end{align*} In the second-to-last line we used this inequality and in the last line we used that the $\infty$-norm factorizes under tensor products. $\square$

With this the statement we want to prove follows at once; for all $X\in\mathbb C^{n\times n}$, all states $\omega\in\mathbb C^{m\times m}$ and all unitaries $U\in\mathbb C^{n\times n}\otimes\mathbb C^{m\times m}$ we compute \begin{align*} \|{\rm tr}_2(U( X\otimes\omega )U^*)\|_1&\leq \|U( X\otimes\omega )U^*\|_1\\ &=\|X\otimes\omega\|_1\\ &=\|X\|_1\|\omega\|_1\\ &=\|X\|_1{\rm tr}(\omega)=\|X\|_1\,. \end{align*} In the second step we used that the trace norm is invariant under unitary channels (because the singular values do not change) and in the last line we used that because $\omega\geq 0$ its trace norm is equal to its trace (obvious from the definition of $\|\cdot\|_1$).

One can re-write this result in terms of superoperator-norms as $\|T\|_{1\to 1}\leq 1$ for all channels $T$ where $\|T\|_{1\to 1}:=\sup_{\|X\|_1=1}\|T(X)\|_1$; in fact because every channel has a fixed point one even gets $\|T\|_{1\to 1}=1$ for all channels.


The follow-up question now is whether this result continues to hold if the underlying trace norm is replaced by another norm. For this one defines the general Schatten $p$-norm as $$\|X\|_p:=\big({\rm tr}((X^\dagger X)^{p/2})\big)^{1/p}$$---or, equivalently, $\|X\|_p:=(\sum_j\sigma_j(X)^p)^{1/p}$ where $\sigma_j(X)$ are the singular values of $X$---as well as the corresponding operator norm $\|\Phi\|_{p\to p}:=\sup_{\|X\|_p=1}\|\Phi(X)\|_p$. Note that this Schatten-$p$ norm is the natural generalization of $\|\cdot\|_2$ and $\|\cdot\|_\infty$ to other indices.

In this language, asking whether $\|T(X)\|_p\leq\|X\|_p$ for all $X$ is equivalent to $\|T\|_{p\to p}\leq 1$ ("$T$ is $p$-norm contractive"). Indeed, one can characterize when this is the case: as shown in this paper (arXiv) the following statements are equivalent:

  • $\Phi$ is unital, i.e. $\Phi({\bf1})={\bf1}$
  • $\|\Phi\|_{p\to p}=1$ for all $p\in[1,\infty]$
  • $\|\Phi\|_{p\to p}=1$ for some $p\in(1,\infty]$

In other words:

For all channels that are not unital and all $p>1$ there exists $X$ such that $\|T(X)\|_p>\|X\|_p$.

Frederik vom Ende
  • 4,163
  • 3
  • 12
  • 49