I'm trying to write down the equation of motion for projectile motion in a coordinate system fixed to the rotating Earth, accounting for as much as possible - say, a ballistic missile. It's proving a little confusing. Here is my attempt:
$$ \underbrace{\dot{m} \dot{\mathbf{r}}_{P/R}}_{\text{thrust}} - \underbrace{\frac{GMm}{r^2} \hat{\mathbf{r}}}_{\text{gravity}} - \underbrace{\frac{1}{2} C_D \rho A v^2 \hat{\dot{\mathbf{r}}}}_{\substack{\text{atmospheric} \\ \text{drag}}} + \underbrace{\frac{1}{2} C_L \rho A v^2 \hat{\mathbf{e}}_L}_{\substack{\text{atmospheric} \\ \text{lift}}} + \underbrace{\mathbf{F}_{ext}}_{\substack{\text{external} \\ \text{forces}}} = m ( \ddot{\mathbf{r}} - \underbrace{\boldsymbol{\Omega} \times \boldsymbol{\Omega} \times \mathbf{r}}_{\substack{\text{centrifugal} \\ \text{acceleration}}} - \underbrace{2 \boldsymbol{\Omega} \times \dot{\mathbf{r}}}_{\substack{\text{Coriolis} \\ \text{acceleration}}} - \underbrace{\dot{\boldsymbol{\Omega}} \times \mathbf{r}}_{\substack{\text{Euler} \\ \text{acceleration}}} ) $$
For example, if the coordinate system were chosen as spherical coords:
- $ (r, \theta, \phi) $ represents radial distance from the centre $r$, longitude $\theta$ and colatitude $\phi$.
- $ \mathbf{r} = r \hat{\mathbf{r}} $ is the position vector of the object.
- $ \dot{\mathbf{r}} = \dot{r} \hat{\mathbf{r}} + r \dot{\theta} \sin \phi \hat{\boldsymbol{\theta}} + r \dot{\phi} \hat{\boldsymbol{\phi}} $ is the velocity vector.
- $ \ddot{\mathbf{r}} = \left ( \ddot{r} - r \dot{\theta}^2 \sin^2 \phi - r \dot{\phi}^2 \right ) \hat{\mathbf{r}} + \left ( (r \ddot{\theta} + 2 \dot{r} \dot{\theta}) \sin \phi + 2r \dot{\theta} \dot{\phi} \cos \phi \right ) \hat{\boldsymbol{\theta}} + \left ( r \ddot{\phi} + 2 \dot{r} \dot{\phi} - r \dot{\theta}^2 \sin \phi \cos \phi \right ) \hat{\boldsymbol{\phi}} $ is the acceleration vector. These three are all standard results.
- $ \boldsymbol{\Omega} $ is the angular velocity vector of the Earth.
- The left hand side is the sum of the forces on the object, in the Earth's rotating frame.
- The right hand side is the rate of change of momentum, $ ma + \dot{m} v $, but with extra terms added to $ a $ and $ v $ to account for the rotating reference frame.
My main concerns are -
Was I right to include the 'fictitious forces' in $ a $ and $ v $? (centrifugal, Coriolis, Euler, tangential velocity)? I got their expressions from here. That page has some pretty confusing notation though.
If so, do those terms have the correct sign? Or should they be negative?
I am not confident at all with the variable mass term. I've never seen a single example doing variable mass problems in rotating reference frames so I just kept it the same.
Thanks!