0

It's known that $SO(3)$ is (locally) isomorphic to $SU(2)$, I am trying to establish a relation from exponentiation of their Lie Algebra, the formula I would like to prove is:

$$e^{-i\theta\hat{n}\cdot\sigma/2}\sigma_{j}e^{i\theta\hat{n}\cdot\sigma/2}=R_{ij}(\hat{n},\theta)\sigma_{i} $$ Here is the prerequisite derivation, for $SO(3)$: The $SO(3)$ matrix in adjoint representation is given by: \begin{equation} (T_{i})_{jk}=-i\epsilon_{ijk} \end{equation} notice it satisfy the commutation relation: \begin{equation} [T_{i},T_{j}]_{\alpha \beta}=(T_{i})_{\alpha \gamma}(T_{j})_{\gamma \beta}-(T_{j})_{\alpha \gamma}(T_{i})_{\gamma \beta}=-\epsilon_{i\alpha \gamma}\epsilon_{j\gamma \beta}+\epsilon_{j\alpha \gamma}\epsilon_{i\gamma \beta} \end{equation} using the generalise Kroneckar delta: \begin{equation} [T_{i},T_{j}]_{\alpha \beta}=\epsilon_{\gamma i\alpha}\epsilon_{\gamma j \beta}-\epsilon_{\gamma j \alpha}\epsilon_{\gamma i \beta}=\delta_{j\beta}\delta_{i\alpha}-\delta_{i\beta}\delta_{j\beta}=i\epsilon_{ijk}(T_{k})_{\alpha \beta} \end{equation} given that $n$ is a unit vector, notice the square satisfy: \begin{equation} (n\cdot T)_{jm}^{2}=(n_{i}T_{i})_{jk}(n_{x}T_{x})_{kl}=-n_{i}n_{x}\epsilon_{kij}\epsilon_{klx}=\delta_{jl}-n_{l}n_{j} \end{equation} \begin{equation} (n\cdot T)_{jm}^{3}=(n_{i}T_{i})_{jk}(n_{x}T_{x})_{kl}(n_{y}T_{y})_{lm}=n_{i}n_{x}n_{y}(-i^{3})\epsilon_{kij}\epsilon_{klx}\epsilon_{lmy} \end{equation} using the Kroneckar delta: \begin{equation} (n\cdot T)_{jm}^{3}=in_{i}n_{x}n_{y}\epsilon_{lmy}(\delta_{il}\delta_{jx}-\delta_{ix}\delta_{jl})=-in_{x}^{2}n_{y}\epsilon_{jmy}=|n|^{2}(n\cdot T)_{jm} \end{equation} the eigenvalue of $(n\cdot T)$ then equivalent to: \begin{equation} (n\cdot T)[(n\cdot T)^{2}-1]=0 \;\;,\;\; n\cdot T=-1,0,1\;\;,\;\; J=1 \end{equation} using exponential to obtain the rotation: \begin{equation} R_{ij}(\hat{n},\theta);=\exp(-i\theta \hat{n}\cdot T)_{ij}=\sum_{n=0}^{\infty}\frac{(-i\theta \hat{n}\cdot T)_{ij}^{n}}{n!} \end{equation} expanding few terms to observe and grouping like terms: \begin{equation} I_{ij}-(\hat{n}\cdot T)_{ij}^{2}+(\hat{n}\cdot T)_{ij}^{2}(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\dots)-i(\hat{n}\cdot T)_{ij}(\theta-\frac{\theta^{3}}{3!}+\dots) \end{equation} therefore the rotation is: \begin{equation} R_{ij}(\hat{n},\theta)=[1-(\hat{n}\cdot T)^{2}]_{ij}+(\hat{n}\cdot T)_{ij}^{2}\cos\theta-i(\hat{n}\cdot T)_{ij}\sin\theta \end{equation} further simplify in compact form: \begin{equation} R_{ij}(\hat{n},\theta)=[\delta_{ij}-(\delta_{ij}-n_{i}n_{j})]+(\delta_{ij}-n_{i}n_{j})\cos\theta-i(-i\epsilon_{kij}n_{k})\sin\theta \end{equation} which yield the Rodrigues Formula: \begin{equation} R_{ij}(\hat{n},\theta)=n_{i}n_{j}+(\delta_{ij}-n_{i}n_{j})\cos\theta-\epsilon_{ijk}n_{k}\sin\theta \end{equation} now also I obtained the $SU(2)$ The expression: \begin{equation} e^{-i\theta\hat{n}\cdot\sigma/2}\sigma_{j}e^{i\theta\hat{n}\cdot\sigma/2} \end{equation} using the BCH formula: \begin{equation} \sigma_{j}+(-\frac{i\theta n_{i}}{2})[\sigma_{i},\sigma_{j}]+\frac{(-\frac{i\theta}{2}n_{i})^{2}}{2!}[\sigma_{i},[\sigma_{i},\sigma_{j}]]+\frac{((-\frac{i\theta n_{i}}{2}))^{3}}{3!}[\sigma_{i},[\sigma_{i},[\sigma_{i},\sigma_{j}]]]+\dots \end{equation} corresponding commutators are \begin{equation} [\sigma_{i},\sigma_{j}]=i\epsilon_{ijk}\sigma_{k} \;\;,\;\; i\epsilon_{ijk} [\sigma_{i},\sigma_{k}]=-\epsilon_{ijk}\epsilon_{ikj}\sigma_{j}=\sigma_{j} \end{equation} observing the pattern and grouping like terms \begin{equation} \sigma_{j}[1-\frac{1}{2!}(\frac{\theta}{2})^{2}+\dots]+i\epsilon_{ijk}\sigma_{k}n_{i}(-i)[\frac{1}{1!}(\frac{\theta}{2})-\frac{1}{3!}(\frac{\theta}{2})^{3}+\dots] \end{equation} using the Taylor expansion of sine and cosine: \begin{equation} e^{-i\theta\hat{n}\cdot\sigma/2}\sigma_{j}e^{i\theta\hat{n}\cdot\sigma/2}=\sigma_{j}\cos\theta+\epsilon_{ijk}n_{i}\sigma_{k}\sin\theta \end{equation}

Nonetheless, I am not able to prove or disprove the first formula.

Qmechanic
  • 220,844
wong tom
  • 631
  • 4
  • 9

1 Answers1

2

You have made a thorough hash of the Campbell identity in your "SU(2)" calculation, by ignoring the summation convention. Of course, you need not have used it, since Pauli vectors are explicitly calculable, so that $$ e^{-i\theta\hat{n}\cdot\sigma/2}\sigma_{j}e^{i\theta\hat{n}\cdot\sigma/2}\\ = (\cos(\theta/2)-i \sin(\theta/2)~\hat{n}\cdot\sigma)~\sigma_{j} ~(\cos(\theta/2)+i \sin(\theta/2)~\hat{n}\cdot\sigma)\\ = \cos^2(\theta/2)~\sigma_j -in^i[\sigma_i,\sigma_j]\cos(\theta/2)\sin(\theta/2)+\sin^2(\theta/2) n_in_k\sigma_i\sigma_j\sigma_k \\ = \cos\!\theta~\sigma_j+ n_i\epsilon^{ijk}\sigma_k \sin\theta+(1-\cos\!\theta) ~n_j~\hat{n}\cdot\sigma, $$ cf. Rodrigues' rotation formula, i.e. adjoint SU(2) action on generators rotates them like vectors under SO(3).

Can you take it from here?

Cosmas Zachos
  • 67,623