Neither is correct. Because $|p\rangle$ is not a normalizable state, you can't really compute the expectation value in this state. The correct quantity that you can consider is
$$
\langle p'|[X,P^2]|p\rangle
$$
Let us evaluate this two different ways,
\begin{align}
\langle p'|[X,P^2]|p\rangle &= \langle p'| X P^2 |p\rangle - \langle p'| P^2 X |p\rangle \\
&= p^2 \langle p'| X |p\rangle - p'^2 \langle p'| X |p\rangle \\
&= ( p^2 - p'^2 ) \langle p'| X |p\rangle \\
&= -i\hbar ( p^2 - p'^2 ) \frac{d}{dp} \langle p' |p\rangle \\
&= -i\hbar ( p^2 - p'^2 )\frac{d}{dp} \delta(p-p') \\
&= 2i\hbar p \delta(p-p')
\end{align}
Alternatively,
\begin{align}
\langle p'|[X,P^2]|p\rangle &= 2 i \hbar \langle p'|P|p\rangle \\
&= 2 i \hbar p \langle p'|p\rangle \\
&= 2 i \hbar p \delta(p-p')
\end{align}
All is well.