I was recently reading about quasicrystals, and I was really surprised to learn that even though they do not have a periodic structure, and only have long range order in a very different sense to the usual one, they can still be detected via crystallographic techniques that involve Bragg diffraction patterns.
More specifically, quasicrystals are like Penrose tilings in that
It is self-similar, so the same patterns occur at larger and larger scales. Thus, the tiling can be obtained through "inflation" (or "deflation") and any finite patch from the tiling occurs infinitely many times.
The emphasized text also means that if I have a finite patch of quasicrystal to which I want to add atoms to make the full pattern, then there will be an infinite number of different ways to do this. Therefore, the process of adding atoms to a finite patch is not deterministic: it is constrained by certain rules but there is always some choice.
To be more precise about what weirds me out, I feel this 'skips' an intermediate step. I can imagine there being a tiling which is not periodic but which is nevertheless deterministic in that given a starting 'seed' patch the whole pattern is determined. In such a pattern there is no translation invariance but there is nevertheless a very rigid sense of long-range order.
Edit:
I was recently shown a construction that falls in this case. Consider the discrete one-dimensional point set $\mathbb Z\cup r\mathbb Z=\{\ldots,-1,0,1,\ldots,\ldots,-r,0,r,\ldots\}$ where $r$ is irrational. This set is not periodic (although any finite patch has infinite other patches that are arbitrarily similar to it), but it does have a well-defined Fourier transform: it is simply the sum of the transforms of $\mathbb Z$ and $r\mathbb Z$, which are single peaks. However, given an initial patch of length bigger than $r$ and $1$, the rest of the pattern is completely determined, and the long-range order is "rigid" without the pattern being periodic.
For quasicrystals, on the other hand, the local orders of two distant patches are definitely correlated but only loosely so. This being the case, I'm having some trouble visualizing how it is possible to obtain diffraction patterns from them, and understanding whether they have well-defined Fourier transforms.
To bring this question to a more, precise footing then, let me ask this: given a starting patch of quasicrystal and a (non-deterministic) rule for adding atoms to it, is the Fourier transform of the full, infinite pattern well defined? If so, what's the intuition that allows this to happen?
If this is actually way more complicated than I realize I would also be OK with a reference to an entry-level resource on the subject, but I would really like a nice explanation of this.