I would like to know the explicit expression of the two-mode squeezing operator $\hat{S}_2(\zeta)$ acting on a general Fock state $|p,q\rangle$, without including any additional operators in the expression.
$\hat{S}_2(\zeta)$ is the two-mode squeezing operator defined as: \begin{equation} \hat{S}_2(\zeta) = \exp\left( \zeta^* \hat{a} \hat{b} - \zeta \hat{a}^\dagger \hat{b}^\dagger\right),\\ \zeta = re^{i\theta} \end{equation}
To provide some context, I have found two specific examples where the operator $\hat{S}_2(\zeta)$ is applied to the vacuum state $|0,0\rangle$ and the number state $|p,0\rangle$:
Example (1). Apply $\hat{S}_2(\zeta) $ to vacuum state $|0,0\rangle$: \begin{align} |\Psi_{0,0}\rangle= \hat{S}_2(\zeta) |0,0\rangle = \sum_{k=0}^{\infty} \frac{(-e^{i\theta} \tanh r)^k}{\cosh r} |k, k\rangle \end{align}
Example (2). Apply $\hat{S}_2(\zeta) $ to the state $|p,0\rangle$: \begin{equation} |\Psi_{p,0}\rangle = \hat{S}_2(\zeta) |p, 0\rangle = \frac{1}{{(\cosh r)}^{p+1}}\sum_{k=0}^\infty \binom{p+k}{p}^{\frac{1}{2}} (-e^{i\theta} \tanh r)^k |p+k, k\rangle \end{equation}
Question:
What is the expression of $|\Psi\rangle$ in Fock basis when apply $\hat{S}_2(\zeta)$ to a general number state $|p, q\rangle$? Specifically, given \begin{equation} |\Psi_{p,q}\rangle=\hat{S}_2(\zeta)|p,q\rangle = \sum_{m=0}^\infty \sum_{n=0}^\infty T(m,n)|m,n\rangle, \end{equation} what are the coefficients $T(m,n)$? Are there any references that provide a detailed derivation or computation of this state $|\Psi\rangle$?
Any guidance, suggestions, or references on this topic would be greatly appreciated. Thank you very much in advance!