2

I've read that biquaternions can be used for Lorentz-Transformations using the formula $$q \mapsto e^{\alpha h \mu/2}e^{\phi\epsilon/2} q \overline{e^{\alpha h \mu/2}e^{\phi\epsilon/2}}^{*},$$ $\alpha$ being the rapidity, $h$ the imaginary unit of the complex coefficients, $\mu$ the direction of the boost and $\phi$ the angle of the spatial rotation around the axis $\epsilon$. The overline is the quaternion conjugation and the $^{*}$ is the complex conjugation of $h$.

I know that $e^{\alpha h \mu/2}e^{\phi\epsilon/2}$ can be written as $$(\cosh{\frac{\alpha}{2}} + h \mu \sinh{\frac{\alpha}{2}})(\cos{}\frac{\phi}{2} + \epsilon \sin{\frac{\phi}{2}}),$$ which seems to be an Hyperbolic Rotation / Lorentz Boost combined with a spatial rotation which is a general Lorentz-Transformation.

Now my question is: Are there also other basic properties of Biquaternions that make them reasonable for Lorentz-Transformations?

Qmechanic
  • 220,844

1 Answers1

5
  1. At the level of formulas, the three quaternionic units $i_a$, $a\in~\{1,2,3\}$, in $\mathbb{H}\cong \mathbb{R}^4$ satisfy $$i_a i_b ~=~ -\delta_{ab} + \sum_{c=1}^3\varepsilon_{abc} i_c, \qquad\qquad a,b~\in~\{1,2,3\}, \tag{1}$$ while the three Pauli matrices $\sigma_a \in {\rm Mat}_{2\times 2}(\mathbb{C})$, $a\in~\{1,2,3\}$, $\mathbb{C}=\mathbb{R}+\mathrm{i}\mathbb{R}$, satisfy $$\sigma_a \sigma_b ~=~ \delta_{ab} {\bf 1}_{2\times 2} + \mathrm{i}\sum_{c=1}^3\varepsilon_{abc} \sigma_c\quad\Leftrightarrow \quad \sigma_{4-a} \sigma_{4-b} ~=~ \delta_{ab} {\bf 1}_{2\times 2} - \mathrm{i}\sum_{c=1}^3\varepsilon_{abc} \sigma_{4-c}, $$ $$ \qquad\qquad a,b~\in~\{1,2,3\},\tag{2}$$ with complex unit $\mathrm{i}\in\mathbb{C}$ that commutes with the quaternionic units $i_a$, $a\in~\{1,2,3\}$, cf. e.g this Phys.SE post.

    Defining the associative algebra of biquaternions as $$\mathbb{B}~:=~\mathbb{C}\otimes_{\mathbb{R}}\mathbb{H}~\cong~\mathbb{H}\otimes_{\mathbb{R}}\mathbb{C},\tag{3}$$ we evidently have a $\mathbb{C}$-algebra isomorphism $$\Phi:~~\mathbb{B}~~\longrightarrow ~~{\rm Mat}_{2\times 2}(\mathbb{C}).\tag{4}$$ by extending the definition $$\begin{align}\Phi(1)~=~&\sigma_{0}~:=~{\bf 1}_{2\times 2},\cr \Phi(i_1)~=~&\mathrm{i}\sigma_3 , \qquad \Phi(i_2)~=~\mathrm{i}\sigma_2 , \qquad \Phi(i_3)~=~\mathrm{i}\sigma_1, \cr \Phi(i_a)~=~&\mathrm{i}\sigma_{4-a}, \qquad a~\in~\{1,2,3\},\end{align}\tag{5}$$ via $\mathbb{C}$-linearity. The biquaternions $\mathbb{B}$ are also isomorphic to the Clifford algebra ${\rm Cl}(1,2;\mathbb{R})$.

  2. For a biquaternion number $$b~=~b^0+\sum_{a=1}^3b^ai_a~\in~\mathbb{B}, \qquad b^0,b^1,b^2,b^3~\in~\mathbb{C},\tag{6}$$ define the biconjugate$^1$ $$ \bar{b}~:=~b^0-\sum_{a=1}^3b^ai_a \tag{7}$$ and the complex conjugate$^1$ $$ b^{\ast}~:=~b^{0\ast}+\sum_{a=1}^3b^{a\ast}i_a.\tag{8}$$

  3. Note that Hermitian conjugate matrix is $$ \Phi(b)^{\dagger}~=~\Phi(\bar{b}^{\ast}),\tag{9} $$ while the transposed matrix is $$ \Phi(b)^t~=~\Phi(b|_{b^2\to-b^2})~=~\Phi(-j\bar{b}j), \tag{10}$$ so that the complex conjugate matrix is $$ \Phi(b)^{\ast}~=~\Phi(-jb^{\ast}j). \tag{11}$$

  4. The determinant $$\det\Phi(b)~=~\sum_{\mu=0}^3 (b^{\mu})^2~=~\bar{b}b~=~\beta(b,b) \tag{12}$$ is the standard bilinear form $\beta:\mathbb{B}\times\mathbb{B}\to \mathbb{C}$ given by $$ \beta(b,b^{\prime})~:=~\frac{1}{2}(\bar{b}b^{\prime}+\bar{b}^{\prime}b). \tag{13}$$ In other words, the $\mathbb{C}$-algebra isomorphism $$ (\mathbb{B},\beta)\quad\stackrel{\Phi}{\cong}\quad ({\rm Mat}_{2\times 2}(\mathbb{C}),\det) \tag{14}$$ is an isometry. In fact, the biquaternions $(\mathbb{B},\beta)$ are a composition algebra $$ \beta(bb^{\prime},bb^{\prime})~=~\det\Phi(bb^{\prime}) ~=~\det\Phi(b)\det\Phi(b^{\prime})~=~\beta(b,b) \beta(b^{\prime},b^{\prime}).\tag{15}$$ Moreover $$\forall b\in\mathbb{B}:~~\beta(b,b)~\neq~0\quad\Leftrightarrow\quad b\text{ is invertible}. \tag{16}$$ The inverse element is $$b^{-1}~=~\frac{\bar{b}}{\beta(b,b)}.\tag{17}$$

  5. We identify Minkowski space $$\mathbb{B}~\supseteq\quad\mathbb{R}^{1,3}~:=~\{b\in\mathbb{B}\mid b=\bar{b}^{\ast}\}\quad\stackrel{\Phi}{\cong}\quad u(2)\quad\subseteq~{\rm Mat}_{2\times 2}(\mathbb{C})\tag{18}$$ with the space of $2\times2$ Hermitian matrices. Notice that the bilinear form $\beta$ restricted to Minkowski space is the standard Minkowski metric with signature (1,3). The biquaternions $\mathbb{B}$ are then the complexified Minkowski space.

    We also identify the Lie group $$\mathbb{B}~\supseteq\quad O(1,\mathbb{B})~:=~\{g\in\mathbb{B}\mid \bar{g}g=1\}\quad\stackrel{\Phi}{\cong}\quad SL(2,\mathbb{C})\quad\subseteq~{\rm Mat}_{2\times 2}(\mathbb{C})\tag{19}$$ with $SL(2,\mathbb{C})$, which is (the double cover of) the restricted Lorentz group $SO^+(1,3;\mathbb{R})$, cf. e.g. this Phys.SE post.

    The latter is because there is a group action $\rho:O(1,\mathbb{B})\times \mathbb{R}^{1,3}\to \mathbb{R}^{1,3}$ given by $$g\quad \mapsto\quad\rho(g)b~:= ~gb\bar{g}^{\ast}, \qquad g\in O(1,\mathbb{B}),\qquad b\in \mathbb{R}^{1,3}, \tag{20}$$ which is length preserving, $$\begin{align} \overline{\rho(g)b}\rho(g)b ~=~&\overline{gb\bar{g}^{\ast}}gb\bar{g}^{\ast} ~=~g^{\ast}\bar{b}\bar{g}gb\bar{g}^{\ast} ~=~g^{\ast}\underbrace{\bar{b}b}_{\in\mathbb{C}}\bar{g}^{\ast}\cr ~=~&\bar{b}bg^{\ast}\bar{g}^{\ast} ~=~\bar{b}b(g\bar{g})^{\ast} ~=~\bar{b}b, \end{align}\tag{21}$$ i.e. $g$ is a pseudo-orthogonal (or Lorentz) transformation.

    The corresponding Lie algebra is $$\mathbb{B}~\supseteq\quad o(1,\mathbb{B}) ~:=~\{b\in\mathbb{B}\mid \bar{b}+b=0\} \quad\stackrel{\Phi}{\cong}\quad sl(2,\mathbb{C})\quad\subseteq~ {\rm Mat}_{2\times 2}(\mathbb{C}).\tag{22}$$

  6. To define the left and right Weyl spinor representations we need a fiducial Lie algebra element $b\in o(1,\mathbb{B})$ that is nilpotent $b^2=0$, and a corresponding projection $p\propto \bar{b}^{\ast}b$, i.e. $$\bar{p}^{\ast}~=~p~=~p^2,\tag{23}$$ cf. Ref. 1. To be concrete we choose the nilpotent elements $$\begin{align} \sigma_{\mp}^{\dagger}~=~\sigma_{\pm}~:=~&\frac{\sigma_1\pm\mathrm{i}\sigma_2}{2}~=~\Phi(b_{\pm})~\in~sl(2,\mathbb{C}), \cr b_{\pm}~:=~&\frac{-\mathrm{i}k\pm j}{2}~\in~o(1,\mathbb{B}), \tag{24}\end{align}$$ and $$\begin{align} {\bf 1}_{2\times 2}-P_{\mp}~=~P_{\pm}~:=~&\frac{{\bf 1}_{2\times 2}\pm\sigma_3}{2}~=~\Phi(p_{\pm})~\in~u(2),\cr p_{\pm}~:=~&\frac{1\mp\mathrm{i}i}{2}~\in~\mathbb{R}^{1,3}. \tag{25}\end{align}$$ We next define left and right Weyl spinor representations $$\begin{align}\rho_{\pm}: O(1,\mathbb{B})\times V_{\pm}~\to~&V_{\pm},\cr \rho_+(g)\psi_+~:=~&g\psi_+,\qquad \rho_-(g)\psi_-~:=~-jg^{\ast}j\psi_-,\cr g~\in~&O(1,\mathbb{B}), \qquad \psi_{\pm}~\in~ V_{\pm}, \tag{26}\end{align}$$ where the $\mathbb{C}$-vector spaces are given by $$ V_{\mp}^{\ast}~=~V_{\pm} ~:=~\mathbb{B}p_{\pm} ~=~\mathbb{B}b_{\mp} ~=~{\rm span}_{\mathbb{C}}\{p_{\pm},b_{\mp}\} ~\subseteq~\mathbb{B}. \tag{27} $$ The Dirac spinor space is the biquaternions $$ V_+\oplus V_-~=~\mathbb{B}, \tag{28} $$ while the Majorana spinor space is the quaternions $$\{q\in\mathbb{B}\mid q=q^{\ast}\}~\cong~\mathbb{H}.\tag{29}$$

References:

  1. C. Furey, Phys. Rev. D86 (2012) 025024, arXiv:1002.1497; chapter III, p.2-3.

--

$^1$ NB: Be aware that different authors use different notations.

Qmechanic
  • 220,844