This might be ridiculously incorrect, but is it possible to find the expectation value of momentum like this?
In the position space: $$\langle x | \psi \rangle = \psi(x)$$ $$\langle \hat{A} \rangle_{x\ basis} = \langle \psi | \hat{A} | \psi \rangle \equiv \int dx \ \psi^{*}(x) \ \hat{A} \ \psi(x)$$ Can we then say that in momentum space: $$\langle p | \psi \rangle = \psi(p) $$ $$\langle \hat{A} \rangle_{p\ basis}=\int dp\ \psi^{*}(p) \ \hat{A} \ \psi(p)$$ If so, can we use the relationship, $\langle p | \psi \rangle = \int \langle x | \psi \rangle \ e^{-ipx/\hbar}\ dx$ (discussed in this post: https://physics.stackexchange.com/a/462977/369620) to solve for $\langle p | \psi \rangle$ given $\langle x | \psi \rangle$, and thus, from $\langle x | \psi \rangle$ alone, solve for the expectation value of an operator in momentum space?