Consider the Lagrangian (we ignore the quantum correction here) $$\mathcal{L}=-\frac{1}{2} \partial_\mu \phi_1 \partial^\mu \phi_1-\frac{1}{2} \partial_\mu \phi_2 \partial^\mu \phi_2-\frac{\mu^2}{2} \left(\phi_1 \phi_1+\phi_2 \phi_2\right)-\frac{\lambda}{4} \left(\phi_1 \phi_1+\phi_2 \phi_2\right)^2$$ where $\phi_1,\phi_2$ are two real scalar fields.
It is obvious that this theory has a global $O(2)$ symmetry. In the case where $\mu^2<0$, any $\phi$ such that $\phi_1^2+\phi_2^2=v^2\equiv\frac{|\mu^2|}{\lambda}$ corresponds to a global minimum of potential $V(\phi):=\frac{\mu^2}{2} \left(\phi_1 \phi_1+\phi_2 \phi_2\right)+\frac{\lambda}{4} \left(\phi_1 \phi_1+\phi_2 \phi_2\right)^2$.
Therefore, this corresponds to an infinite number of degenerate vacuums $\vert \Omega_\theta\rangle$ in the corresponding system, such that $\langle\Omega_\theta\vert\phi_1\vert \Omega_\theta\rangle=v\sin(\theta),\langle\Omega_\theta\vert\phi_2\vert \Omega_\theta\rangle=v\cos(\theta)$, these vacuums can be connected by $O(2)$ transformations, thus in the $\mu^2<0$ case we have a spontaneous symmetry breaking in $O(2)$ symmetry.
So here's my question: Is there any way to calculate the explicit expression of $\vert \Omega_{\theta=0}\rangle$? How?