10

What is the partition function

$$\mathcal Z^{(N)}_\beta(H) : =\mathrm{Tr}\exp(-\beta H) \tag{Z} $$

$\left(\beta >0\right)$ for a system of $N$ indistinguishable and non-interacting bosons (e.g. harmonic oscillators) with Hamiltonian $H$?

Why is $$\mathscr Z^{(N)}_\beta(H) := \frac{\mathcal Z_\beta^{(1)}(h)^N}{N!}\tag{Z$^\prime$}$$ with the corresponding single particle Hamiltonian $h$ and the partition function for a single particle $\mathcal Z_\beta^{(1)}$ not the correct partition function? Is it an approximation? If so, under which (physical) circumstances is this a good approximation? How does the factor $N!$ arise?

3 Answers3

9

The problem with the partition function in $(\mathrm Z^\prime)$ is that there the physical states are not counted correctly (cf. the answer by @SolubleFish). However, this partition function can be obtained in a certain limit, as shown in the end. To obtain the correct expression for the partition function, we should start more or less from scratch:

The Hilbert space of $N$ identical bosons is given by $\mathcal H := \vee^N \mathcal H_1$, where $\mathcal H_1$ is the single-particle Hilbert space. If $h$ denotes the Hamiltonian for a single particle (e.g. harmonic oscillator), then the Hamiltonian for the system of interest is given by

$$H:= \sum\limits_{i=1}^N h_i \quad , \tag{1}$$

where $h_i:= \mathbb I \otimes \ldots \otimes h \otimes \ldots \otimes \mathbb I$ ($h$ is at the $i$-th position and the total number of factors is $N$).

Let $\{|k\rangle\}_{k \in \mathbb N_0} \subset \mathcal H_1$ denote the eigenbasis of $h$ with $h |k\rangle = \epsilon_k |k\rangle$ and

$$|k_1,k_2,\ldots , k_N\rangle := \sqrt{\frac{N!}{n_{k_1}!n_{k_2}!\cdots n_{k_N}!}} S \left(|{k_1}\rangle \otimes |{k_2}\rangle \otimes \ldots \otimes |{k_N}\rangle \right) \quad , \tag{2} $$ with the symmetrization operator $S:=\frac{1}{N!} \sum\limits_p P$ and the permutation operator for $N$ particles $P$. Then a basis in $\mathcal H$ is given by (we employ some standard ordering): $$\{|k_1,k_2,\ldots ,k_N\rangle\}_{k_1\leq k_2 \leq \ldots \leq k_N} \quad . \tag{3}$$

It holds that

$$\mathbb I_{\mathcal H} = \sum\limits_{k_1=0}^{\infty}\sum\limits_{k_2=k_1}^{\infty} \cdots \sum\limits_{k_N=k_{N-1}}^\infty |k_1,k_2,\ldots, k_N\rangle \langle k_1,k_2,\ldots ,k_N| \tag{4}$$

and $$\langle k_1,k_2,\ldots ,k_N|k_1^\prime,k_2^\prime,\ldots k^\prime_N\rangle = \delta_{k_1,k^\prime_1}\, \delta_{k_2,k^\prime_2} \cdots\, \delta_{k_N,k^\prime_N} \quad . \tag{5}$$

Moreover, we have $$H|k_1,k_2,\ldots, k_N\rangle = \left(\epsilon_{k_1} +\epsilon_{k_2} + \ldots +\epsilon_{k_N} \right)|k_1,k_2,\ldots, k_N\rangle \quad . \tag{6}$$

The partition function in equation $(\mathrm{Z})$ can now be simplified. Indeed, by making use of $(4)$-$(6)$ we find

\begin{align} \mathcal Z^{(N)}_\beta (H) &= \sum\limits_{k_1=0}^{\infty}\sum\limits_{k_2=k_1}^{\infty} \cdots \sum\limits_{k_N=k_{N-1}}^\infty \exp-\beta\,\left(\epsilon_{k_1} +\epsilon_{k_2} + \ldots +\epsilon_{k_N}\right)\\ &= \sum\limits_{k_1=0}^{\infty} e^{-\beta\epsilon_{k_1}}\sum\limits_{k_2=k_1}^{\infty} e^{-\beta\epsilon_{k_2}}\, \cdots \sum\limits_{k_N=k_{N-1}}^\infty e^{-\beta\epsilon_{k_N}} \quad . \tag{7} \end{align}


For a quantum harmonic oscillator, we have $\epsilon_k := \hbar \omega \left(k +\frac{1}{2}\right)$ for some $\omega >0$. By defining $q:= e^{-\beta \hbar \omega}$ we can hence write

$$\mathcal Z^{(N)}_\beta(H) = q^{N/2} \sum\limits_{k_1=0}^{\infty} q^{k_1}\sum\limits_{k_2=k_1}^{\infty} q^{k_2} \cdots \sum\limits_{k_N=k_{N-1}}^\infty q^{k_N}\quad . \tag{8}$$

To proceed, note that here $0<|q|<1$ and thus $$\sum\limits_{k=m}^\infty q^k = \frac{q^m}{1-q} \tag{9} \quad . $$ Consequently, we find \begin{align} \mathcal Z^{(N)}_\beta (H) &= q^{N/2} \sum\limits_{k_1=0}^{\infty} q^{k_1}\sum\limits_{k_2=k_1}^{\infty} q^{k_2} \cdots \sum\limits_{k_{N-1}=k_{N-2}}^\infty q^{k_{N-1}}\sum\limits_{k_N=k_{N-1}}^\infty q^{k_N}\\ &= q^{N/2} \sum\limits_{k_1=0}^{\infty} q^{k_1}\sum\limits_{k_2=k_1}^{\infty} q^{k_2} \cdots \sum\limits_{k_{N-1}=k_{N-2}}^\infty q^{k_{N-1}} \frac{q^{k_{N-1}}}{1-q} \tag{10}\\ &= \frac{q^{N/2}}{1-q} \sum\limits_{k_1=0}^{\infty} q^{k_1}\sum\limits_{k_2=k_1}^{\infty} q^{k_2} \cdots \sum\limits_{k_{N-1}=k_{N-2}}^\infty (q^2)^{k_{N-1}} \\&= \ldots \end{align} which eventually yields

$$\mathcal Z^{(N)}_\beta(H) = q^{N/2} \prod\limits_{i=1}^N \frac{1}{1-q^i} \quad . \tag{11} $$ The reader may formalize this argument as an exercise.

The result coincides with equation $(14)$ of Investigations on finite ideal quantum gases and $(9)$ of Statistical mechanics and the partitions of numbers.


The second linked paper shows/ states that

$$\mathcal Z^{(N)}_\beta(H) \underbrace{\longrightarrow}_{N^2 \mu\to 0} \mathscr Z_\beta^{(N)}(H) \quad , \tag{12} $$

with $\mu:=\beta\hbar\omega$. Alternatively, we can use the following relation, which may be proven by induction:

$$ N!= \lim\limits_{\mu \to 0} \frac{\prod\limits_{i=1}^N 1-e^{-\mu i}}{(1-e^{-\mu})^N} = \lim\limits_{\mu \to 0} \frac{\mathcal Z_\beta^{(1)}(h)^N}{\mathcal Z^{(N)}_\beta(H)}\quad. \tag{13} $$

This shows that for a sufficiently small $\mu^*(N)\gtrsim 0$ it holds that $$\mathscr Z_{\beta^*}^{(N)}(H) \approx \mathcal Z_{\beta^*}^{(1)}(h)^N \, \frac{\mathcal Z^{(N)}_{\beta^*}(H) }{ \mathcal Z_{\beta^*}^{(1)}(h)^N} = \mathcal Z^{(N)}_{\beta^*}(H) \quad . \tag{14} $$

The reader is encouraged to test this approximation for some finite $\mu$ as a function of $N$. We find that the larger $N$ is, the smaller $\beta$, i.e. the higher the temperature, must be, in order to be a good approximation. This is in a qualitatively agreement with the limit taken in $(12)$.

All in all, in the high temperature limit, the partition function $\mathscr Z$ should be a good approximation for $\mathcal Z$, at least in our example.

5

I would like to add something to @JasonFunderberker's answer :

$Z'(h,N,\beta) = \mathcal Z^{(1)}_\beta(h)^N$ is the partition function for $N$ distinguishable particles. The Hilbert space for this system is just the $n$-fold tensor product of the $1$-particle states.

When, the particle are indistinguishable, we have to make sure we are not over-counting states. Dividing the whole partition function by $N!$ would be correct if every state was overcounted $N!$ times in $Z'$ above, or equivalently in the Hilbert space of symmetric states.

But this is not correct : while a generic states is indeed overcounted by a factor of $N!$, some states are not. For example, if all the particles are in the same state, there is no overcounting at all.

SolubleFish
  • 6,189
1

The last page in this lecture answers this question.

https://www.pas.rochester.edu/~stte/phy418S23/units/unit_3-4.pdf

Essentially because $\frac{1}{N!}$ corrects the overcounting if particles are in different single particle states which is overwhelmingly likely for classical particles since the number of available states at high temperature is many more than the number of particles. It over-corrects if particles are in the same state which is likely in the quantum case.