I am trying to find the ground state of the following Lagrangian (with $\lambda> 0 , g > 0$):
$$\tag{1} \mathcal{L}= -\frac{1}{2}(\partial_\mu \partial^\mu \sigma + \partial_\mu \pi \partial^\mu \pi ) + \frac{1}{2} m^2 (\sigma^2 + \pi^2) - \frac{1}{4} \lambda ( \sigma^2 + \pi^2)^2 - g\sigma$$
This gives me the following Hamiltonian density:
$$\tag{2} \mathcal{H}= - (\frac{1}{2} \dot{\sigma}^2 + \nabla^2 \sigma + \frac{1}{2} \dot{\pi} + \nabla ^2 \pi) - \frac{1}{2} m^2 (\sigma^2 + \pi^2) + \frac{1}{4} \lambda (\sigma^2 + \pi^2)^2 -g\sigma$$
$\pi$ and $\sigma$ are scalar fields.
I have seen it on my lecturer's notes that:
$$\tag{3} \mathcal{H_{min}} = \left[- \frac{1}{2} m^2 (\sigma^2 + \pi^2) + \frac{1}{4} \lambda (\sigma^2 + \pi^2)^2 -g\sigma \right]_{min}\\= \frac{1}{4} \lambda \left[(\sigma^2 + \pi^2 ) - \frac{m^2}{\lambda}\right]^2 - \frac{m^4}{4\lambda} + g\sigma$$
and therefore that this means that:
$$\tag{4} \mathcal{H}_{min} = -\frac{m^4}{4 \lambda} - \frac{gm}{\sqrt{\lambda}}$$
for $\sigma = -m /\sqrt{\lambda}$ and $\pi = 0.$
Why is the first part of $(2)$ ignored for equation $(3)$?
I understand that choosing those values for $\sigma$ and $\pi$ lead to equation $4$? But what defines equation $4$ as the minimum that we are searching for?