Suppose we want to construct a wave function for 2 free (relativistic) fermions. As we are dealing with fermions the total wave function has to be antisymmetric under interchange of the coordinates, $$ \Psi(x_1,x_2) = - \Psi(x_2,x_1) $$ If we assume that we can factorize the wave function in terms of single particle wave functions we can write $$ \Psi(x_1,x_2) = \psi_{1}(x_1) \psi_{2}(x_2) - \psi_{1}(x_1)\psi_2(x_2) $$ which fulfills the anti-symmetry requirement. The plane wave single particle states are given by, $$ \psi_{\mathbf{k},m_s} (x) = u_{\mathbf{k},m_s}(s) \phi( \mathbf{k} \cdot \mathbf{r}) $$ So I would expect the total wavefunction to be \begin{align} \Psi(x_1,x_2) &= u_{\mathbf{k}_1,m_{s_1}}(s_1) \phi( \mathbf{k}_1 \cdot \mathbf{r}_1) u_{\mathbf{k}_2,m_{s_2}}(s_2) \phi( \mathbf{k}_2 \cdot \mathbf{r}_2) - u_{\mathbf{k}_1,m_{s_1}}(s_2) \phi( \mathbf{k}_1 \cdot \mathbf{r}_2) u_{\mathbf{k}_2,m_{s_2}}(s_1) \phi( \mathbf{k}_2 \cdot \mathbf{r}_1) \\ &= u_{\mathbf{k}_1,m_{s_1}}(s_1) u_{\mathbf{k}_2,m_{s_2}}(s_2) \phi( \mathbf{k}_1 \cdot \mathbf{r}_1) \phi( \mathbf{k}_2 \cdot \mathbf{r}_2) - u_{\mathbf{k}_1,m_{s_1}}(s_2) u_{\mathbf{k}_2,m_{s_2}}(s_1) \phi( \mathbf{k}_1 \cdot \mathbf{r}_2) \phi( \mathbf{k}_2 \cdot \mathbf{r}_1) \end{align} However I have seen this written as $$ u(\mathbf{k}_1,m_{s_1}) u(\mathbf{k}_2,m_{s_2}) \phi( \mathbf{k}_1 \cdot \mathbf{r}_1) \phi( \mathbf{k}_2 \cdot \mathbf{r}_2) - u(\mathbf{k}_2,m_{s_2}) u(\mathbf{k}_1,m_{s_1}) \phi( \mathbf{k}_1 \cdot \mathbf{r}_2) \phi( \mathbf{k}_2 \cdot \mathbf{r}_1) $$ If I'm not mistaking one cannot freely change the order of the Dirac spinors ($ u(\mathbf{k}_1,m_{s_1}) u(\mathbf{k}_2,m_{s_2}) \neq u(\mathbf{k}_2,m_{s_2}) u(\mathbf{k}_1,m_{s_1}) $) so these expressions seem to be uncompatible. What would the correct expression look like?
Maybe related to my question is my confusement about the spin coordinate in the Dirac spinor. It is my understanding that the Dirac spinor only depends on the projection of the spin $m_s$ which denotes a quantum number or a quantum state, and is not a coordinate. So is $m_{s_i}$ invariant under a coordinate switch $s_1 \leftrightarrow s_2$? Why explicitly write the spin coordinate?