7

In Spiegel's Outline Of Theoretical Mechanics (more precisely in the Moving Coordinate Systems chapter, § "Derivative Operators") I find (both in the 1968 and the 1977 edition) the following formula:

$D_F \equiv D_M +\omega \times$

where $D_F$ and $D_M$ denote time derivative operators, and $\omega$ stands for the angular velocity of the moving frame $M$ (with respect to a fixed frame $F$).

Is there some explanation for this notation, or is it a misprint?

enter image description here

Sandejo
  • 5,496

3 Answers3

20

What you're seeing there is an operator equation. What it means is that the two operations on each side of the equation have the same effect on any vector $\mathbf{A}$: $$ D_F \mathbf{A} = D_M \mathbf{A} + \pmb{\omega} \times \mathbf{A}. $$ By analogy, if we have two functions $f$ and $g$, saying that $f = g$ is a more compact way of saying $f(x) = g(x)$ for all $x$.

19

$\newcommand{\e}{\boldsymbol=}$ $\newcommand{\m}{\boldsymbol-}$ $\newcommand{\x}{\boldsymbol\times}$

Given two vectors $\:\boldsymbol\omega\:$ and $\:\mathbf x\:$ represented by their cartesian coordinates \begin{equation} \boldsymbol\omega\e \begin{bmatrix} \omega_1 \vphantom{\dfrac{a}{b}}\\ \omega_2 \vphantom{\dfrac{a}{b}}\\ \omega_3 \vphantom{\dfrac{a}{b}} \end{bmatrix}\qquad \texttt{and} \qquad \mathbf x\e \begin{bmatrix} x_1 \vphantom{\dfrac{a}{b}}\\ x_2 \vphantom{\dfrac{a}{b}}\\ x_3 \vphantom{\dfrac{a}{b}} \end{bmatrix} \tag{01}\label{01} \end{equation} their outer (cross) product is \begin{equation} \boldsymbol\omega\x\mathbf x\e \begin{bmatrix} \mathbf i & \mathbf j & \mathbf k \vphantom{\dfrac{a}{b}}\\ \omega_1 & \omega_2 & \omega_3 \vphantom{\dfrac{a}{b}}\\ x_1 & x_2 & x_3 \vphantom{\dfrac{a}{b}} \end{bmatrix} \e \begin{bmatrix} \omega_2 x_3\m \omega_3 x_2 \vphantom{\dfrac{a}{b}}\\ \omega_3 x_1\m \omega_1 x_3 \vphantom{\dfrac{a}{b}}\\ \omega_1 x_2\m \omega_2 x_1 \vphantom{\dfrac{a}{b}} \end{bmatrix} \e \begin{bmatrix} \hphantom{\m} 0 & \m \omega_3 & \hphantom{\m}\omega_2 \vphantom{\dfrac{a}{b}}\\ \hphantom{\m}\omega_3 & \hphantom{\m} 0 & \m\omega_1 \vphantom{\dfrac{a}{b}}\\ \m\omega_2 & \hphantom{\m}\omega_1 & \hphantom{\m}0 \vphantom{\dfrac{a}{b}} \end{bmatrix} \begin{bmatrix} x_1 \vphantom{\dfrac{a}{b}}\\ x_2 \vphantom{\dfrac{a}{b}}\\ x_3 \vphantom{\dfrac{a}{b}} \end{bmatrix} \tag{02}\label{02} \end{equation} So it's reasonable to use the symbol $\:\boldsymbol\omega\x\:$ for the linear operator (transformation) represented by a $\:3\times 3\:$ antisymmetric matrix \begin{equation} \boldsymbol\omega\x \boldsymbol\equiv \begin{bmatrix} \hphantom{\m} 0 & \m \omega_3 & \hphantom{\m}\omega_2 \vphantom{\dfrac{a}{b}}\\ \hphantom{\m}\omega_3 & \hphantom{\m} 0 & \m\omega_1 \vphantom{\dfrac{a}{b}}\\ \m\omega_2 & \hphantom{\m}\omega_1 & \hphantom{\m}0 \vphantom{\dfrac{a}{b}} \end{bmatrix} \tag{03}\label{03} \end{equation}

$=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!=\!$

Related 1 : Velocity in a turning reference frame.

Related 2 : Vector product in a 4-dimensional Minkowski spacetime.

VoulKons
  • 16,825
  • 2
  • 45
  • 73
4

The answers are already given suffice, so I wanted to offer another use of the $\boldsymbol{r}\times$ term.

Find the mass moment of inertia tensor about the origin of a point mass $m$ located at $\boldsymbol{r}$.

There are two formulas for this, and they both produce the same result

  1. Use $$\mathrm{I}_0 = -m [\boldsymbol{r} \times] [\boldsymbol{r} \times] = -m \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix} \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

  2. Use $$\mathrm{I}_0 = m \left( \boldsymbol{r} \cdot \boldsymbol{r} - \boldsymbol{r} \odot \boldsymbol{r} \right) = m \left( \begin{bmatrix} x \\ y \\ z \end{bmatrix}^\top \begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}^\top \right) $$

If you work out the math both result in

$$ \mathrm{I}_0 = m \begin{bmatrix} y^2+z^2 & -x y & -x z\\ -x y & x^2+z^2 & - y z \\ -x z & -y z & x^2+y^2 \end{bmatrix} $$

My preference is to use $[\boldsymbol{r}\times]$ notation because it keeps the connection to cross products evident, and it codes easily in programming.

The above produces the parallel axis theorem in 3D, from the center of mass C to the origin 0 as

$$ \mathrm{I}_0 = \mathrm{I}_c - m [ \boldsymbol{c}\times][\boldsymbol{c}\times] $$

The above has a direct connection if the angular momentum about a pivot point which is

$$ \begin{aligned} \boldsymbol{L}_0 & = \boldsymbol{L}_c + \boldsymbol{c} \times m \boldsymbol{v}_c \\ & = \mathrm{I}_c \boldsymbol{\omega} + \boldsymbol{c} \times m ( \boldsymbol{\omega} \times \boldsymbol{c} ) \\ & = \mathrm{I}_c \boldsymbol{\omega} - m\, \boldsymbol{c} \times (\boldsymbol{c} \times \boldsymbol{\omega}) \\ & = \mathrm{I}_0 \boldsymbol{\omega} \end{aligned} $$

Additionally, constructing the 6×6 spatial inertia matrix you also use this term

$$ \boldsymbol{I} = \begin{Bmatrix} m \boldsymbol{1} & -m [ \boldsymbol{c} \times] \\ m [\boldsymbol{c} \times] & \mathrm{I}_c - m [\boldsymbol{c}\times][\boldsymbol{c}\times] \end{Bmatrix} $$

Now back to taking derivatives on rotating frames, this is done with spatial algebra with the following operator

$$ \mathbf{v} \times = \begin{Bmatrix} [\boldsymbol{\omega} \times & [\boldsymbol{v}\times] \\ [0] & [\boldsymbol{\omega}\times] \end{Bmatrix} $$

So the acceleration due to the motion of joint axis $\mathbf{s}$ is calculated with

$$ \mathbf{a} = \mathbf{v} \times \mathbf{s} \,\,\dot{q} $$

As you can see this notation has extensive usage in robotics and all levels of rigid body dynamics.

John Alexiou
  • 40,139