Let's start completely abstractly, and consider the abstract algebra over $\mathbb C$ generated by symbols $\sigma_1,\sigma_2,\sigma_3$ subject to your relations: $\{\sigma_i,\sigma_j\} = 2$, in particular $\sigma_i^2 = 1$.
It is not hard to see that this algebra is generated as a vector space by the 8 elements $1, \sigma_1, \sigma_2, \sigma_3, \sigma_1\sigma_2, \sigma_1\sigma_3, \sigma_2\sigma_3, \sigma_1\sigma_2\sigma_3$, all other monomials in the $\sigma_i$ can be reduced to sums of these using the relations. Let's call these elements $e_1,\ldots,e_8$.
Left-multiplication by any element $\tau$ in this algebra is a linear transformation, and the regular representation of this algebra in this basis is the matrix algebra thus obtained. The matrices corresponding to the $\sigma_i$ are an $8\times 8$-example of what you're looking for.
Concretely, what $\sigma_1$ does on the basis is $e_1\mapsto e_2, e_2\mapsto e_1, e_3\mapsto e_5, e_4\mapsto e_6, e_5\mapsto e_3, e_6\mapsto e_4, e_7\mapsto e_8, e_8\mapsto e_7$. In matrix form
$$\sigma_1 = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}$$
Likewise you will get matrices for $\sigma_2$ and $\sigma_3$, and they will satisfy the relations.
For example, for $\sigma_2$ we have $e_1 = 1 \mapsto \sigma_2 = e_3$, and $e_2 = \sigma_1\mapsto \sigma_2\sigma_1 = 2 - \sigma_1\sigma_2 = 2e_1 - e_5$, etc, giving us the matrix form
$$\sigma_2 = \begin{pmatrix}0 & 2 & 1 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & -1 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 2 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 2 & 1 & 0\\0 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\\0 & 0 & 0 & 1 & 0 & 0 & 0 & 2\\0 & 0 & 0 & 0 & 0 & -1 & 0 & 0\end{pmatrix}$$
and in the same way we find
$$\sigma_3 = \begin{pmatrix}0 & 2 & 2 & 1 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & -2 & -1 & 0 & 0\\0 & 0 & 0 & 0 & 2 & 0 & -1 & 0\\1 & 0 & 0 & 0 & 0 & 2 & 2 & 0\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\0 & -1 & 0 & 0 & 0 & 0 & 0 & -2\\0 & 0 & -1 & 0 & 0 & 0 & 0 & 2\\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{pmatrix}.$$
Note that there may be smaller representations.
In case you'd like to do some computations, here are the matrices in SymPy format:
from sympy import Matrix, eye
I = eye(8)
s1 = Matrix([[0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0]])
s2 = Matrix([[0, 2, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, -1, 0, 0, 0],
[1, 0, 0, 0, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 2, 1, 0],
[0, -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, -1],
[0, 0, 0, 1, 0, 0, 0, 2],
[0, 0, 0, 0, 0, -1, 0, 0]])
s3 = Matrix([[0, 2, 2, 1, 0, 0, 0, 0],
[0, 0, 0, 0, -2, -1, 0, 0],
[0, 0, 0, 0, 2, 0, -1, 0],
[1, 0, 0, 0, 0, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, -1, 0, 0, 0, 0, 0, -2],
[0, 0, -1, 0, 0, 0, 0, 2],
[0, 0, 0, 0, 1, 0, 0, 0]])
Note that to find Hermitian matrices more has to be done.