The fully symmetric spin-up proton spin-flavour wave function in the constituent quark model is usually presented as follows: $$\begin{align} \frac{1}{\sqrt{18}} ~ ( &2 |u\uparrow ~ u\uparrow ~ d\downarrow \rangle - |u\uparrow ~ u\downarrow ~ d\uparrow \rangle - |u\downarrow ~ u\uparrow ~ d\uparrow \rangle \\ + & 2 |u\uparrow ~ d\downarrow ~ u\uparrow \rangle - |u\downarrow ~ d\uparrow ~ u\uparrow \rangle - |u\uparrow ~ d\uparrow ~ u\downarrow \rangle \\ + & 2|d\downarrow ~u\uparrow ~ u\uparrow \rangle - |d\uparrow ~u\downarrow ~ u\uparrow \rangle - |d\uparrow ~u\uparrow ~ u\downarrow \rangle). \end{align}$$
However the following also satisfies all the symmetry properties desired: $$\begin{align} \propto ( &a\> |u\uparrow ~ u\uparrow ~ d\downarrow \rangle - b\> |u\uparrow ~ u\downarrow ~ d\uparrow \rangle - b\> |u\downarrow ~ u\uparrow ~ d\uparrow \rangle \\ +&a\> |u\uparrow ~ d\downarrow ~ u\uparrow \rangle - b\> |u\downarrow ~ d\uparrow ~ u\uparrow \rangle - b\> |u\uparrow ~ d\uparrow ~ u\downarrow \rangle \\ +&a\> |d\downarrow ~u\uparrow ~ u\uparrow \rangle - b\> |d\uparrow ~u\downarrow ~ u\uparrow \rangle - b\> |d\uparrow ~u\uparrow ~u\downarrow \rangle ). \end{align}$$
How does one "narrow" it down so to speak. A group theoretic aproach to this would be preferred.