I often see two definition of current in the book and literature, and I am a little bit confused.
The current density
$$\textbf{J}_1(\textbf{r})=\frac{-ie\hbar}{2m_e}\sum\limits_{n\textbf{k}}\{\psi^*_{n\textbf{k}}(\textbf{r})\nabla\psi_{n\textbf{k}}(\textbf{r})-[\nabla\psi^*_{n\textbf{k}}(\textbf{r})]\psi_{n\textbf{k}}(\textbf{r})\}$$
The current
$$\textbf{J}_2=e\sum\limits_{n\textbf{k}}\langle \psi_{n\textbf{k}}|\frac{1}{m_e}\hat{\textbf{p}}|\psi_{n\textbf{k}}\rangle , \quad \text{where} \quad \hat{\textbf{p}}=-i\hbar\nabla . $$
What's the difference between these two expressions? Could $\int\textbf{J}_1(\textbf{r})d\textbf{r}$ lead to $\textbf{J}_2$?
Plus: $\textbf{J}_2$ could be written as $\textbf{J}_2=-\frac{ie\hbar}{m_e}\sum\limits_{n\textbf{k}}\int\psi^*_{n\textbf{k}}(\textbf{r})\nabla\psi_{n\textbf{k}}(\textbf{r}) d\textbf{r}$