Generally, Gamma matrices could be constructed based on the Clifford algebra. \begin{equation} \gamma^{i}\gamma^{j}+\gamma^{j}\gamma^{i}=2h^{ij}, \end{equation}
My question is how to generally construct the charge conjugation matrix to raise one spinor index in the gamma matrix.
In even dimensions (D=2m), consider complex Grassmann algebra $\Lambda_{m}[\alpha^{1},...,\alpha^{m}]$ with generators $\alpha^{1},...,\alpha^{m}.$) Namely, we define $\widehat{\alpha }^{i}$ and $\widehat{\beta}_{i}$ as multiplication and differentiation operators: \begin{equation} \widehat{\alpha}^{i}\psi=\alpha^{i}\psi, \end{equation} \begin{equation} \widehat{\beta}_{i}\psi=\frac{\partial}{\partial\alpha^{i}}\psi. \end{equation}
According to the Grassmann algebra, we have \begin{equation} \widehat{\alpha}^{i}\widehat{\alpha}^{j}+\widehat{\alpha}^{j}\widehat{\alpha }^{i}=0, \end{equation} \begin{equation} \widehat{\beta}_{i}\widehat{\beta}_{j}+\widehat{\beta}_{j}\widehat{\beta}% _{i}=0 \end{equation} \begin{equation} \widehat{\alpha}^{i}\widehat{\beta}_{j}+\widehat{\beta}_{j}\widehat{\alpha }^{i}=\delta_{j}^{i}. \end{equation} This means that $\widehat{\alpha}^{1},...,\widehat{\alpha}^{m},\widehat{\beta }_{1},...,\widehat{\beta}_{m}$ specify a representation of Clifford algebra for some choice of $h$ (namely, for $h$ corresponding to quadratic form $\frac{1}{2}(x^{1}x^{m+1}+x^{2}x^{m+2}+...+x^{m}x^{2m})$). It follows that operators \begin{equation} \Gamma^{j}=\widehat{\alpha}^{j}+\widehat{\beta}_{j},1\leq j\leq m, \end{equation} \begin{equation} \Gamma^{j}=\widehat{\alpha}^{j-m}-\widehat{\beta}_{j-m},m<j\leq2m, \end{equation} determine a representation of $Cl(m,m,\mathbb{C})$.
For example, in $D=4$, we can obtain $$\Gamma^{1}=\begin{pmatrix}0& 1& 0& 0\\ 1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& 1& 0\\ \end{pmatrix}$$, $$\Gamma^{2}=\begin{pmatrix}0& 0& 0& 1\\ 0& 0& {-1}& 0\\ 0& {-1}& 0& 0\\ 1& 0& 0& 0\\ \end{pmatrix}$$, $$\Gamma^{3}=\begin{pmatrix}0& {-1}& 0& 0\\ 1& 0& 0& 0\\ 0& 0& 0& 1\\ 0& 0& {-1}& 0\\ \end{pmatrix}$$, $$\Gamma^{4}=\begin{pmatrix}0& 0& 0& {-1}\\ 0& 0& 1& 0\\ 0& {-1}& 0& 0\\ 1& 0& 0& 0\\ \end{pmatrix}.$$
My question is how to generally construct the charge conjugation matrix C, so that we could have $$C\Gamma C^{-1}=\pm\Gamma^T$$