Two time dependent wavefunctions:
$\Psi _1(t)= \psi_1*exp(\frac{-i * E_1}{\hbar}*t)$
$\Psi _2(t)= \psi_2*exp(\frac{-i * E_2}{\hbar}*t)$
Both a solution to the timeindependent (note "in") Schrödinger eq. with the same H. We know they are solutions. Furthermore $E_1$ and $E_2$ are different.
$\mid \psi_1exp(\frac{-i E_1}{\hbar}t) + \psi_2exp(\frac{-i E_2}{\hbar}t)\mid ^2 $
$= \mid \psi_1exp(\frac{-i E_1}{\hbar}*t)\mid^2 + \mid\psi_2exp(\frac{-i E_2}{\hbar}t)\mid^2 + 2 \mid\psi_1exp(\frac{-i E_1}{\hbar}t) \psi_2exp(\frac{-i E_2}{\hbar}t) \mid$
$= \mid \psi_1exp(\frac{-i E_1}{\hbar}*t)\mid^2 + \mid\psi_2exp(\frac{-i E_2}{\hbar}t)\mid^2 + 2 \mid\psi_1 \psi_2exp(\frac{-i (E_2-E_1)}{\hbar}t) \mid$
Is the following correct?:
$\mid \psi_1exp(\frac{-i E_1}{\hbar}*t)\mid^2 = \mid\psi_1^{(*)}\psi_1\mid = \mid\psi_1\mid^2* exp(\frac{-i E_1}{\hbar}t) * exp(\frac{i E_1}{\hbar}t) = \mid\psi_1\mid^2$
leading to:
$\mid \psi_1exp(\frac{-i E_1}{\hbar}t) + \psi_2exp(\frac{-i E_2}{\hbar}t)\mid ^2 = \mid\psi_1\mid^2 + \mid\psi_2\mid^2 + 2 \mid\psi_1 \psi_2exp(\frac{-i (E_2-E_1)}{\hbar}t) \mid$
meaning that: $\mid\Psi _1(t)+\Psi _2(t)\mid $ ocilliates with $\frac{\hbar}{(E_2-E_2)}$ ?