The question asked to show that the identity holds
$\left [ \hat{a}_{-},\left ( \hat{a}_{+} \right )^n \right ]=n\left ( \hat{a}_{+} \right )^{n-1}$ between operators if $[\hat{a}_{-},\ \hat{a}_{+} ]=1$.
The solution that came with the tutorial were 'ugly' and a stark deviation in the flavour in my attempt. However, my attempt did not result in showing the identity despite the fact that-to the best of my knowledge-no error has been committed.
Attempt:
$\left [ \hat{a}_{-},\left ( \hat{a}_{+} \right ) \right ]=\hat{a}_{-}\left ( \hat{a}_{+} \right )^{n}-\left ( \hat{a}_{+} \right )^{n}\hat{a}_{-} =\hat{a}_{-}\hat{a}_{+}\cdot \cdot \cdot \hat{a}_{+}-\hat{a}_{+}\cdot \cdot \cdot \hat{a}_{+}\hat{a}_{-} $
$\left ( n-factorial \space for \space \hat{a}_{+} \right )$
$=\left ( \hat{a}_{-}\hat{a}_{+} \right )\left ( \hat{a}_{+}\cdot \cdot \cdot \hat{a}_{+} \right )-\left ( \hat{a}_{+}\cdot \cdot \cdot \hat{a}_{+} \right )\left ( \hat{a}_{+}\hat{a}_{-} \right )$
$\left ( n-1 \space factorial \space for \space \hat{a}_{+} \right )$
$=\left ( \left ( \hat{a}_{-}\hat{a}_{+} \right )-\left ( \hat{a}_{+}\hat{a}_{-} \right ) \right )\left ( \hat{a}_{+}\cdot \cdot \cdot \hat{a}_{+} \right )$
=$\left ( \hat{a}_{+} \right )^{n-1}$
Where's the $n$?