The squeezing operator for two modes $\hat{a}$ and $\hat{b}$ is given by
\begin{equation} \hat{S}(r)=\exp[r(\hat{a}\hat{b}-\hat{a}^{\dagger}\hat{b}^{\dagger})/2]. \end{equation} I am stuck to find out the action of the squeezing operator on a two mode vacuum state $\arrowvert 0,0\rangle$, i.e., $\hat{S}(r)\arrowvert 0,0\rangle$. The general expression is given by
\begin{equation} \hat{S}(r)\arrowvert 0,0\rangle=\sqrt{1-\lambda^{2}}\sum_{_n=0}^{\infty}\lambda^{n} \arrowvert n,n\rangle, \end{equation} where $\lambda=\tanh r$ and $r$ is the squeezing parameter. The operators satisfy the usual commutation relation $[\hat{a},\hat{a}^{\dagger}]=1=[\hat{b},\hat{b}^{\dagger}]$ and $|m,n\rangle=|m\rangle\otimes |n\rangle$, and $\hat{a}^{\dagger}|n\rangle_{A}=\sqrt{n+1}|n+1\rangle_{A}$ and $\hat{a}|n\rangle_{A}=\sqrt{n}|n-1\rangle_{A}$. I tried to diagonalize the expression inside the exponential using Bogoliubov transformation but it seems that i'm missing some trick. Any suggestions is highly appreciated.