Consider
$$\int_0^t dt'\int_0^{t}dt'' \mathcal{T}\left(H(t')H(t'')\right)$$
\begin{align}
&=
\int_0^t dt'\int_0^{t'}dt'' \mathcal{T}\left(H(t')H(t'')\right)
\\ & \qquad
+\int_0^t dt'\int_{t'}^{t}dt'' \mathcal{T}\left(H(t')H(t'')\right)
\\&=
\int_0^t dt'\int_0^{t'}dt'' H(t')H(t'')
\\ & \qquad
+\int_0^t dt'\int_{t'}^{t}dt''H(t'')H(t')
\end{align}
The last line follows from the definition of time ordering: in the first integral $t''<t'$ checking the limits of integration, so $\mathcal{T}\left(H(t')H(t'')\right)=H(t')H(t'')$, similarly for the second integral.
As you mentioned using the trick with triangles and squares, we can change the second integral to
$$\int_0^t dt''\int_{0}^{t''}dt'H(t'')H(t')$$
This is the upper triangle in a $(t',t'')$ diagram. Now relabel dummy variables
$$\int_0^t dt'\int_{0}^{t'}dt''H(t')H(t'')$$
And so recombining we get
$$\int_0^t dt'\int_0^{t}dt'' \mathcal{T}\left(H(t')H(t'')\right)=2\int_0^t dt'\int_{0}^{t'}dt''H(t')H(t'').$$
Let's take a reasonably straightforward example:
$$H(t)=t\sigma_y +(1-t)\sigma_x$$
$H(0)$ doesn't commute with $H(1)$.
Let $$I(t)=\int_0^t dt' H(t')=\frac{t^2}{2}\sigma_y +t(1-\frac{t}{2})\sigma_x$$
Then \begin{align}I(t)^2 &=\int_0^t dt_1 \int_0^t dt_2 H(t_1) H(t_2)\\ &=(\frac{t^4}{4}+t^2(1-t/2)^2)I+\frac{t^3}{2}(1-t/2)\{\sigma_y,\sigma_x\}=t^2(\frac{t^2}{2}-t+1)I \end{align}
Now with time ordering \begin{align} J(t)=\int_0^t dt_1 \int_0^t dt_2 \mathcal{T}\left(H(t_1) H(t_2)\right)&=\int_0^t dt_1\int_0^{t_1}dt_2 H(t_1)H(t_2)+\int_0^t dt_1\int_{t_1}^{t}dt_2 H(t_2)H(t_1)\\ &=\int_0^t dt_1 H(t_1)\int_0^{t_1}dt_2 H(t_2)+\int_0^t dt_1\int_{t_1}^{t}dt_2 H(t_2)H(t_1)\\ &= \int_0^t dt_1 H(t_1)I(t_1)+\int_0^t dt_1 \left(I(t)-I(t_1)\right)H(t_1)\end{align}
It's useful to commute some commutators:
\begin{align}\left[H(t_1),H(t_2)\right]&=\left[ t_1\sigma_y +(1-t_1)\sigma_x , t_2\sigma_y +(1-t_2)\sigma_x \right]\\ &=t_1(1-t_2)[\sigma_y,\sigma_x]+t_2(1-t_1)[\sigma_x,\sigma_y]\\&=2i(t_2-t_1)\sigma_z\end{align}
And
\begin{align}
\left[H(t_1),I(t_1)\right] &=\left[ H(t_1) \,, \int_0^{t_1} dt_2 H(t_2)\right]\\&= \int_0^{t_1} dt_2 \left[ H(t_1) \,,H(t_2)\right]\\&=-it_1^2\sigma_z
\end{align}
So
\begin{align}
J(t)&=\int_0^t dt_1 \left[H(t_1),I(t_1)\right] +I(t)^2\\&=-i\frac{t^3}{3}\sigma_z+I(t)^2
\end{align}
Finally lets consider
$$K(t)=2\int_0^t dt_1 \int_0^{t_1} dt_2 H(t_1)H(t_2) \overset{?}{=} J(t)$$
Well
\begin{align}
K(t)=2\int_0^t dt_1 H(t_1)I(t_1)&=\int_0^t dt_1 \left[H(t_1),I(t_1)\right]+\{H(t_1),I(t_1)\}\\&=-i\frac{t^3}{3}\sigma_z + \int_0^t dt_1 \{H(t_1),I(t_1)\}
\end{align}
Now
\begin{align}
\{H(t_1),I(t_1)\}=\int_0^{t_1} dt_2 \{H(t_1),H(t_2)\}&=\int_0^{t_1} dt_2 \left(2t_1 t_2 +2(1-t_1)(1-t_2)\right)I\\&=I\left(t_1^3 +2(1-t_1)(1-\frac{t_1}{2})t_1\right)
\end{align}
Finally if you multiply out and integrate you will find that
$$K(t)=-i\frac{t^3}{6}\sigma_z +t^2(\frac{t^2}{2}-t+1)I=-i\frac{t^3}{6}\sigma_z+I(t)^2=J(t)$$
As an extra note, the definition I've seen for the time ordered exponential is (with the convention that the first term is the identity operator):
$$\mathcal{T}\exp\left(-i/\hbar \int_0^t h(t')dt'\right):=\sum_{n=0}^\infty \frac{1}{n!}\left(\frac{-i}{\hbar}\right)^n \int_0^t dt_1 \ldots\int_0^t dt_n \mathcal{T}\left(H(t_1)\ldots H(t_n)\right) $$
And for the Dyson series:
$$U^\dagger(t,0)=I+\frac{-i}{\hbar}\int_0^t dt' H(t')+\left(\frac{-i}{\hbar}\right)^2\int_0^t dt'\int_0^{t'}dt'' H(t')H(t'')+\ldots$$
The above reasoning at least formally suggests them to be equivalent.