Equation of motion for expectation value of a quantum particle in a momentum eigenstate: $$\frac{d}{dt} \langle x \rangle = \frac{1}{i h} \langle [x,H] \rangle$$
and since it's in a momentum eigenstate, $$\frac{1}{i h} \langle [x,H] \rangle = \frac{1}{i h} \langle p \vert [x,H] \vert p \rangle$$
Expanding this,
$$\frac{1}{i h} \langle p \vert (x \frac{p^2}{2m} + xV(x)) - (\frac{p^2}{2m}x + V(x)x)\vert p \rangle = \frac{1}{i h} (\frac{p^2}{2m} - \frac{p^2}{2m}) \langle p \vert x \vert p \rangle + \frac{1}{i h} \langle p \vert[x,V(x)] \vert p \rangle = 0$$
since $V$ is $V(x)$. But $\frac{d}{dt}\langle x \rangle = \frac{p}{m}$. Where is my mistake?