I have read, that if you have a Dirac spinor \begin{equation} \psi = \begin{pmatrix} \phi_R\\ \phi_L \end{pmatrix} \end{equation}
that you can apply a Lorentz boost along the $z$-direction with rapidity $y$ like this:
\begin{equation} \phi_R\rightarrow e^{-\frac{1}{2}\sigma_zy}\phi_R; \quad\phi_L\rightarrow e^{+\frac{1}{2}\sigma_zy}\phi_L \end{equation}
and a general boost like this: \begin{equation} \phi_R\rightarrow e^{-\frac{1}{2}\mathbf{\hat n}\cdot{\bf\sigma}}\phi_R; \quad\phi_L\rightarrow e^{+\frac{1}{2}\mathbf{\hat n}\cdot{\bf\sigma}}\phi_L \end{equation}
Why is this the correct way to transform the spinor? Also are opposite signs in the exponentials just convention or do they have deeper meaning?