I want to build a circuit that performs the following operation: $$ U_f = \left(\begin{array}{cccccccccc} 1 & 0 & 0 & \dots & \dots & \dots & \dots & \dots & \dots & 0 \\ 0 & 1 & 0 & & & & & & & \vdots\\ 0 & 0 & 1 & & & & & & & \vdots \\ \vdots & & & \ddots & & & & & & \vdots \\ \vdots & & & & 0 & 1 & & & & \vdots \\ \vdots & & & & 1 & 0 & & & & \vdots \\ \vdots & & & & & & \ddots & & & \vdots \\ \vdots & & & & & & & 1 & 0 & 0 \\ \vdots & & & & & & & 0 & 1 & 0 \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots & 0 & 0 & 1 \end{array}\right) $$ but I don't know the equivalent gate combination, and I have never seen such a matrix on any book.
So I am curious about how one could build this circuit, and generally, given a matrix, if there is any general procedure of decomposing it in gates or deriving the circuit.


