For arbitrary linear super-operators $U_j$ and $V_j\def\D{\mathrm{Diamond}} \def\Dn#1{\lVert #1 \rVert_\diamond}\def\le{\leqslant} $, we have
$$\def\D{\mathrm{Diamond}} \def\Dn#1{\lVert #1 \rVert_\diamond}\def\le{\leqslant} \begin{aligned}
\D(U_1 U_2, V_1 V_2)
&= \Dn{U_1 U_2 - V_1 V_2}
\\&\le \Dn{U_1 U_2 - V_1 U_2} + \Dn{V_1 U_2 - V_1 V_2}
\\&= \Dn{(U_1 - V_1) U_2} + \Dn{V_1(U_2-V_2)}
\\&\le \Dn{U_1 - V_1} \Dn{U_2} + \Dn{V_1} \Dn{U_2 - V_2},
\end{aligned}$$
writing compositions by juxtaposition for brevity.
In the case that $U_j$ and $V_j$ are CPTP maps, we have $\Dn{U_j} = \Dn{V_j} = 1$, so that
$$\begin{aligned}
\D(U_1 U_2, V_1 V_2)
&\le
\Dn{U_1 - V_1} \Dn{U_2} + \Dn{V_1} \Dn{U_2 - V_2}
\\&= \Dn{U_1 - V_1} + \Dn{U_2 - V_2}
\\&=
\D(U_1,V_1) + \D(U_2,V_2).\end{aligned}$$