Suppose I want to obtain a gate sequence representing a particular 1 qubit unitary matrix. The gate set is represented by a discrete universal set, e.g. Clifford+T gates or $\{T,H\}$ gates. A well known approach to solve the problem is to use Solovay-Kitaev (SK) algorithm. I tried this implementation for SK algorithm. The resulting circuits are incredibly long ($l\sim 100-1000$ gates for the Fowler distance $\epsilon \sim 0.01$, tolerance error for the basic approximation $\epsilon\sim 0.03$). Moreover the basic approximation (building a KD-tree) can take quite long time (although this might be due to somewhat slow Python code).
On the other hand I wrote a very simple script that generates random sequences of gates and selects the best performing circuits. It works very fast and results in much shorter circuits with Fowler distances $\epsilon< 10^{-4}-10^{-5}$. This should be more than sufficient for any realistic applications.
So, at this point I don't quite understand, what is practical significance of Solovay-Kitaev algorithm in this case (for 1 qubit operations)?
Of course, the theoretical scaling of SK algorithm looks pretty good. The number of gates generated by SK algorithm to approximate any 1 qubit unitary grows as $l\sim\log^c(1/\delta)$, where $\delta$ is L2 approximation error. For random sampling there are no such guarantees. However on practice I'm not convinced that SK is very useful for 1 qubit case. No doubts that in the case of large number of qubits random sampling will fail because of the curse of dimensionality. But it seems that SK algorithm also quickly becomes computationally unfeasible ($\#$ of qubits $\geq 4$?).