In the John Watrous TQI notes and he states that for a given square operator $A \in \mathbf{L}(X)$,
$$ \Vert A \Vert_1 = \max \{\vert \langle U,A\rangle \vert: U \in \mathbf{U}(x) \}$$ He also states that tho achieve this the identity is useful $$\Vert A \Vert_p = \Vert \mathbf{s}(A) \Vert_p$$ where $\mathbf{s}(A)$ are the singular values of $A$.
In my attempt to prove this I used that given $A \in \mathbf{L}(X)$ and $ U,V \in \mathbf{U}(x)$, taking the SVD $A = U \Sigma V^*$ and $W = UV^*$ $$\max_{T \in \mathbf{U}(X)} \vert \langle T,A\rangle \vert \geq \vert\langle W,A\rangle \vert = \vert {\rm Tr}(W^* A) \vert = \vert {\rm Tr}(VU^*U\Sigma V^*) \vert= \vert \sum_i s_i \vert = \sum_i \vert s_i \vert$$
To prove now that $\max_{T \in \mathbf{U}(X)} \vert \langle T,A\rangle \vert \leq \sum_i \vert s_i \vert $ i've tried, and is where i couldn't reach any satisfactory result
Given $Z \in \mathbf{U}(x) $ such that $\Vert Z \Vert \geq \Vert T \Vert$, then \begin{align*}\max_{T \in \mathbf{U}(X)} \vert \langle T,A\rangle \vert &\leq \vert\langle ZW,ZA\rangle \vert \\ &= \vert {\rm Tr}(W^*Z^*Z A) \vert \\ &= \vert {\rm Tr}(VU^*U\Sigma V^*) \vert= \Big\vert \sum_i s_i \Big\vert = \sum_i \vert s_i \vert \end{align*}
Thus we conclude that $$ \max_{T \in \mathbf{U}(X)} \vert \langle T,A\rangle \vert = \sum_i \vert s_i \vert = \Vert A \Vert_1$$ Does someone have a better way to state that $\max_{T \in \mathbf{U}(X)} \vert \langle T,A\rangle \vert \leq \sum_i \vert s_i \vert $ ?