3

I am confused about what kinds of maps are valid infinitesimal generators of completely positive maps. I know that any Markovian completely positive map can be written in the form $e^{t \mathcal{L}}$, where $\mathcal{L}$ is the Linbladian, a time-independent and Hermiticity-preserving map. My question is about the converse: if $t \mathcal{L}$ is a Hermiticity-preserving map, is it true that $e^{t \mathcal{L}}$ is a completely positive map? If not, are there any useful sufficient conditions on a map that ensure its exponential is completely positive, or even just positive if that's simpler?

Thanks in advance!

Frederik vom Ende
  • 4,163
  • 3
  • 12
  • 49
nlupugla
  • 73
  • 5

1 Answers1

3

First a basic observation: if all Hermitian preserving $\mathcal L$ gave rise to completely positive dynamics $e^{t\mathcal L}$ for all $t\geq 0$, then so would $-\mathcal L$ (still Hermitian preserving!) meaning $e^{t\mathcal L}$ is completely positive for all $t\leq 0$, as well. But then $e^{t\mathcal L}$ had completely positive inverse $e^{-t\mathcal L}$ for all $t\geq 0$ meaning $e^{t\mathcal L}$ would have to have Kraus rank 1 for all times, thus restricting $e^{t\mathcal L}$ to a strict subset of all completely positive maps. In other words this basic argument shows that there has to be an extra condition which characterizes complete positivity of $e^{t\mathcal L}$. Indeed the following result is well known:

Given any linear map $\mathcal L:\mathbb C^{n\times n}\to\mathbb C^{n\times n}$, the following statements hold.

  1. $e^{t\mathcal L}$ is Hermitian preserving for all $t$ if and only if $\mathcal L$ is Hermitian preserving.
  2. If $\mathcal L$ is Hermitian preserving, then the following are equivalent:
    • $\mathcal L$ is conditionally completely positive, that is, $$({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(\mathcal L)({\bf1}-|\Omega\rangle\langle\Omega|)\geq 0$$ where $|\Omega\rangle:=\frac1{\sqrt n}\sum_j|j\rangle\otimes|j\rangle$ is the maximally entangled state and $\mathsf C(\mathcal L)=({\rm id}\otimes\mathcal L)(|\Omega\rangle\langle\Omega|)$ is the Choi state corresponding to $\mathcal L$
    • There exist $\Phi$ completely positive and $K\in\mathbb C^{n\times n}$ such that $\mathcal L=\Phi+K(\cdot)+(\cdot)K^\dagger$
    • $e^{t\mathcal L}$ is completely positive for all $t$

Proof: 1. It is well known that arbitrary $A\in\mathbb C^{n\times n}$ is Hermitian if and only if ${\rm tr}(BA)\in\mathbb R$ for all $B$ Hermitian (choose $B=|x\rangle\langle x|$). Thus a linear map $\Phi$ is Hermitian preserving if and only if ${\rm tr}(B\Phi(A))\in\mathbb R$ for all $A,B$ Hermitian. This readily implies the desired statement: If $\mathcal L$ is Hermitian preserving, then $$ {\rm tr}(B e^{t\mathcal L}(A))=\sum_j\frac{t^j}{j!}{\rm tr}(B\mathcal LL^j(A))\in\mathbb R $$ for all $t\in\mathbb R$ and all $A,B$ Hermitian, and if—conversely—$e^{t\mathcal L}$ is Hermitian preserving for all $t$, then $$ {\rm tr}(B\mathcal L(A))=\frac{d}{dt}\underbrace{{\rm tr}(B e^{t\mathcal L}(A))}_{\in\mathbb R}\Big|_{t=0}\in\mathbb R $$ as desired. 2. First, as proven in the phys.SE post linked above conditionally completely positive implies the form $\mathcal L=\Phi+K(\cdot)+(\cdot)K^\dagger$. Next, we want to see that such $\mathcal L$ gives rise to completely positive dynamics: $e^\Phi=\sum_j\frac{\Phi^j}{j!}$ is completely positive (sums, products, and limits of CP maps are CP) and from the exponential formula $e^{A(\cdot)+(\cdot)B}=e^A(\cdot)e^B$ it follows that $e^{K(\cdot)+(\cdot)K^\dagger}=e^K(\cdot)(e^K)^\dagger$. Together with the Trotter product formula this implies $$ e^{t\mathcal L}=\lim_{n\to\infty}\big( e^{t\Phi/n}e^{t(K(\cdot)+(\cdot)K^\dagger)/n} \big)^n=\lim_{n\to\infty}\big( e^{t\Phi/n}\circ \big(e^{tK/n}(\cdot)(e^{tK/n})^\dagger\big) \big)^n $$ meaning—as before—$e^{t\mathcal L}$ is completely positive as a limit of (products of) completely positive maps. Finally, if $e^{t\mathcal L}$ is completely positive, i.e. $\mathsf C(e^{t\mathcal L})\geq 0$ for all $t$, then by linearity of the Choi formalism \begin{align*} ({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(\mathcal L)({\bf1}-|\Omega\rangle\langle\Omega|)&= \frac{d}{dt} ({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(e^{t\mathcal L})({\bf1}-|\Omega\rangle\langle\Omega|)\Big|_{t=0}\\ &=\lim_{t\to 0^+}({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C\Big(\frac{e^{t\mathcal L}-{\rm id}}{t}\Big)({\bf1}-|\Omega\rangle\langle\Omega|)\\ &=\lim_{t\to 0^+}\frac1t\Big(({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(e^{t\mathcal L})({\bf1}-|\Omega\rangle\langle\Omega|)\\ &\qquad\qquad\qquad-({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C({\rm id})({\bf1}-|\Omega\rangle\langle\Omega|)\Big)\,. \end{align*} But $\mathsf C({\rm id})=|\Omega\rangle\langle\Omega|$ so the second term vanishes. This leaves \begin{align*} ({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(\mathcal L)({\bf1}-|\Omega\rangle\langle\Omega|)&=\lim_{t\to 0^+}\frac1t({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(e^{t\mathcal L})({\bf1}-|\Omega\rangle\langle\Omega|) \end{align*} which is $\geq 0$ because all $\mathsf C(e^{t\mathcal L})$ are, so the same is true for $({\bf1}-|\Omega\rangle\langle\Omega|)\mathsf C(e^{t\mathcal L})({\bf1}-|\Omega\rangle\langle\Omega|)$ and for its (scaled) limit. $\square$

Frederik vom Ende
  • 4,163
  • 3
  • 12
  • 49