I need help coming up with the code that I can use in a computer algebra system like Sage, Python, or Mathematica that can evaluate the circuit.
I am not a programmer and used ChatGPT to try to help me create the code. However, I believe these are incorrect because they do not evaluate.
Here is what ChatGPT came up with in Mathematica:
TensorProduct[(1/Sqrt[2]){{1, 1}, {1, -1}}, IdentityMatrix[2], IdentityMatrix[2]] .
TensorProduct[{{1, 0}, {0, e^(-i*pi/4)}}, IdentityMatrix[2], IdentityMatrix[2]] .
TensorProduct[{{1, 0}, {0, e^(i*pi/4)}}, IdentityMatrix[2], IdentityMatrix[2]] .
TensorProduct[{{1, 0}, {0, e^(-i*pi/4)}}, IdentityMatrix[2], IdentityMatrix[2]] .
TensorProduct[{{1, 0}, {0, e^(ipi/4)}}, {{1, 0}, {0, e^(-ipi/4)}}, IdentityMatrix[2]] .
TensorProduct[(1/Sqrt[2]){{1, 1}, {1, -1}}, IdentityMatrix[2], IdentityMatrix[2]] .
TensorProduct[IdentityMatrix[2], {{1, 0}, {0, e^(-i*pi/4)}}, IdentityMatrix[2]] .
TensorProduct[IdentityMatrix[2], {{1, 0}, {0, -1}}, {{1, 0}, {0, e^(i*pi/4)}}]
Here is what ChatGPT came up with in Sage/Python:
from sage.matrix.constructor import matrix
from sage.symbolic.constants import pi
from sage.functions.trig import exp
Define matrices
A = (1/sqrt(2)) * matrix([[1, 1], [1, -1]])
B = matrix.identity(2)
Compute the result of the sequential matrix products
result = A.tensor_product(B).tensor_product(B) *
matrix([[1, 0], [0, exp(-I*pi/4)]])
* matrix([[1, 0], [0, exp(I*pi/4)]])
* matrix([[1, 0], [0, exp(-I*pi/4)]])
* matrix([[1, 0], [0, exp(I*pi/4)]])
* matrix([[1, 0], [0, exp(-I*pi/4)]])
* A.tensor_product(B).tensor_product(B)
* B.tensor_product(matrix([[1, 0], [0, exp(-I*pi/4)]]))
* B.tensor_product(matrix([[1, 0], [0, -1]]))
* matrix([[1, 0], [0, exp(I*pi/4)]])
Display the result
print(result)
