We can answer this question in the general case. Let $\mathbb{P}_\psi\equiv|\psi\rangle\!\langle\psi|$ and $\mathbb{P}_\phi\equiv|\phi\rangle\!\langle\phi|$ be two arbitrary pure states.
We want to compute $\|\mathbb{P}_\psi-\mathbb{P}_\phi\|_1$, where $\|A\|_1\equiv \operatorname{tr}\sqrt{A^\dagger A}=\operatorname{tr}|A|$. Equivalently, $\|A\|_1$ is the sum of the singular values of $A$, or the sum of the absolute values of the eigenvalues of $A$ when $A$ is normal or Hermitian.
In other words, we are interested in the eigenvalues of $\mathbb{P}_\psi-\mathbb{P}_\phi$. To this end, observe that regardless of the underlying space dimension, this is effectively a 2x2 matrix, because it only acts nontrivially on the space spanned by $|\psi\rangle$ and $|\phi\rangle$. Consider then what the matrix looks like in an orthonormal basis for this subspace containing $|\psi\rangle$. That is, we represent the matrix in the orthonormal basis
$\{|\psi\rangle, |\psi_\perp\rangle\}$ where
$$|\psi_\perp\rangle \equiv N (|\phi\rangle - |\psi\rangle \langle\psi|\phi\rangle)$$
with $N$ suitable renormalisation constant.
The idea is of course that $\langle \psi|\psi_\perp\rangle=0$ and $\operatorname{span}(\{|\psi\rangle,|\psi_\perp\rangle\})=\operatorname{span}(\{|\psi\rangle,|\phi\rangle\})$.
In this basis, we have
$$\mathbb{P}_\psi-\mathbb{P}_\phi =
\begin{pmatrix}1- F & -\langle\psi|\phi\rangle \langle\phi|\psi_\perp\rangle
\\
-\langle\psi_\perp|\phi\rangle \langle\phi|\psi\rangle & F-1
\end{pmatrix}
= \begin{pmatrix}1-F & -\sqrt{F(1-F)} e^{i\alpha} \\
-\sqrt{F(1-F)} e^{-i\alpha} & F-1
\end{pmatrix},$$
where $F\equiv |\langle\psi|\phi\rangle|^2$ and $\alpha\in\mathbb{R}$ is some phase.
It follows that the eigenvalues are
$$\lambda_\pm = \pm\sqrt{(1-F)^2 + F(1-F)}
= \pm \sqrt{1-F}.$$
We conclude that
$$\|\mathbb{P}_\psi-\mathbb{P}_\phi\|_1 = 2 \sqrt{1-F}.$$
In the particular case at end, we have $F=1/2$.
See also Is the trace distance upper bounded by the Euclidean distance? for some applications of this result.