States that are completly classical : $$ \begin{aligned} \tilde\rho_{A B} & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X, Y}(x, y)(|x\rangle \otimes|y\rangle)(\langle x| \otimes\langle y|)_{A B} \\ & =\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{X, Y}(x, y)|x\rangle\left\langle\left. x\right|_A \otimes \mid y\right\rangle\left\langle\left. y\right|_B\right. \end{aligned} \tag1 $$
- The states $\left\{|x\rangle_A\right\}_{x \in \mathcal{X}}$ and $\left\{|y\rangle_x\right\}_{y \in \mathcal{Y}}$ form an orthonormal basis for the respective systems $x$ and $y$.
- State has only classical correlations because can be prepared by LOCC.
Classical-Quantum state : $$ \begin{aligned} \rho^{A B} & =\sum_{x, y} p(x, y)|x\rangle\langle x| \otimes \pi_y \\ &\equiv \rho^{A B}=\sum_x p(x)|x\rangle\langle x| \otimes \rho_x^B \end{aligned} $$ with $p(x)=\sum_y p(x, y)$ and $\rho_x^B=\frac{1}{p(x)} \sum_y p(x, y) \pi_y$
Let the spectral decomposition of $\rho_x^B$ be: $$ \rho_x^B=\sum_{y \in \mathcal{Y}} p_{Y \mid X}(y \mid x) \left|y_x\right\rangle\left\langle\left. y_x\right|_B\right. $$ where $\left\{\left|y_x\right\rangle\right\}$ forms orthonormal basis for $B$.
$$ \begin{aligned} \Rightarrow \rho^{A B} & =\sum_x p_X(x)|x\rangle\left\langle x\right|_A \otimes \sum_y p_{Y \mid X}(y \mid x) \mid y_x\rangle\left\langle y_x\right|_B \\ & =\sum_x \sum_y p_X(x) p_{Y \mid X}(y \mid x)|x\rangle\left\langle x\right|_A \otimes \mid y_x\rangle\left\langle y_x\right|_B \end{aligned} $$ $$ =\sum_x \sum_y p_{X, Y}(x, y)|x\rangle\left\langle\left. x\right|_A \otimes \mid y_x\right\rangle\left\langle y_x\right|_B \tag2 $$
Question: From equation 1 and 2, we see $\rho$ and $\tilde \rho$ have similar form, expressed in terms of orhtonormal basis of both systems. I would be greateful if someone properly explain (in detail) the difference between Classical-Quantum states and States that are completely classical, possibly in terms of the expresssions of $\rho$ and $\tilde \rho$.