This quantity was defined independently in https://arxiv.org/abs/1306.1586, where many of its properties were explored therein.
To answer your question, the quantity can be defined in the general case as
\begin{align}
\widetilde{D}_\alpha(\rho\Vert\sigma) & := \sup_{\varepsilon > 0} \frac{1}{\alpha-1} \ln\operatorname{Tr}\left[\left(\sigma(\varepsilon)^{\frac{1-\alpha}{2\alpha}} \rho \sigma(\varepsilon)^{\frac{1-\alpha}{2\alpha}}\right)^\alpha\right]\\
& = \lim_{\varepsilon \to 0^+} \frac{1}{\alpha-1} \ln\operatorname{Tr}\left[\left(\sigma(\varepsilon)^{\frac{1-\alpha}{2\alpha}} \rho \sigma(\varepsilon)^{\frac{1-\alpha}{2\alpha}}\right)^\alpha\right]
\end{align}
where $\sigma(\varepsilon):=\sigma+\varepsilon I$. Since $\sigma(\varepsilon)$ is invertible, the inverse is a true inverse.
It follows from the reasoning in the proof of Proposition 7.29 on page 363 of https://arxiv.org/abs/2011.04672v2 that
$$
\widetilde{D}_\alpha(\rho\Vert\sigma) =
\begin{cases}
\frac{1}{\alpha-1} \ln\operatorname{Tr}\left[\left(\sigma^{\frac{1-\alpha}{2\alpha}} \rho \sigma^{\frac{1-\alpha}{2\alpha}}\right)^\alpha\right] & \text{if } \alpha \in (0,1) \vee (\alpha> 1 \wedge \operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma) )\\
+\infty & \text{if } \alpha > 1 \wedge \operatorname{supp}(\rho) \not \subseteq \operatorname{supp}(\sigma)
\end{cases}
$$
The expression with the inverse here is understood as generalized inverse. Alternatively, since the condition $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma) $ holds, without loss of generality one can take the support of $\sigma$ to be the whole Hilbert space.