2

While answering this question, I stumbled upon the fact that the only proof I knew of the optimality of Grover's algorithm (that is, Zalka's one) uses a phase oracle. I know that a phase oracle can be built from a standard oracle, but we would need the converse to use this proof in the case of a standard oracle.

The converse is almost true, in that it is possible to build it using a controlled version of the phase oracle, which is not in the problem's statement. Has there been a proof of the optimality of Grover's algorithm in the Standard oracle case? Or is there a reduction from the phase oracle to the standard one without using a controlled version?

Tristan Nemoz
  • 8,429
  • 3
  • 11
  • 39

1 Answers1

2

I don't know how to reduce a standard oracle to a phase oracle, but the proof can actually be generalized to the standard oracle model, with a little more work. You can check out the proof on my blog for better math typesetting.

Notations and definitions

Let $S=\{0,1\}^n$ be the search space, and $R\subset S$ be the solutions, we define $N=|S|,M=|R|$. Let $f_R:S\to\{0,1\}$ be a function that checks whether a given solution is valid, i.e. $f_R(x)=1\iff x\in R$. To find a solution, we are allowed to query $f_R$ as an oracle in our algorithm design. For a quantum algorithm, we are given an "oracle operation" $O_R$ such that $O_R|x\rangle|b\rangle=|x\rangle|b\oplus f_R(x)\rangle$

First, we introduce a lemma to bound the sum of vector norms:

Lemma 1

Let $\{\alpha_i\}$ and $\{\beta_i\}$ be some finite sequence of vectors in a inner product space. Then we have $$\begin{align} \sum_i\|\alpha_i+\beta_i\|^2&\le\left(\sqrt{\sum_i\|\alpha_i\|^2}+\sqrt{\sum_i\|\beta_i\|^2}\right)^2\\ \sum_i\|\alpha_i+\beta_i\|^2&\ge\left(\sqrt{\sum_i\|\alpha_i\|^2}-\sqrt{\sum_i\|\beta_i\|^2}\right)^2 \end{align}$$

Proof of Lemma 1

By the triangle inequality, we have

$$\begin{align} \sum_i\|\alpha_i+\beta_i\|^2 &\le\sum_i(\|\alpha_i\|+\|\beta_i\|)^2\\ &=\sum_i\|\alpha_i\|^2+\sum_i\|\beta_i\|^2+2\sum_i\|\alpha_i\|\|\beta_i\| \end{align}$$

Then we apply Cauchy-Schwarz inequality on the third term:

$$\begin{align} \sum_i\|\alpha_i+\beta_i\|^2 &\le\sum_i\|\alpha_i\|^2+\sum_i\|\beta_i\|^2+2\sqrt{\sum_i\|\alpha_i\|^2}\sqrt{\sum_i\|\beta_i\|^2}\\ &=\left(\sqrt{\sum_i\|\alpha_i\|^2}+\sqrt{\sum_i\|\beta_i\|^2}\right)^2 \end{align}$$

The other side is similar:

$$\begin{align} \sum_i\|\alpha_i+\beta_i\|^2 &\ge\sum_i(\|\alpha_i\|-\|\beta_i\|)^2\\ &=\sum_i\|\alpha_i\|^2+\sum_i\|\beta_i\|^2-2\sum_i\|\alpha_i\|\|\beta_i\|\\ &\ge\sum_i\|\alpha_i\|^2+\sum_i\|\beta_i\|^2-2\sqrt{\sum_i\|\alpha_i\|^2}\sqrt{\sum_i\|\beta_i\|^2}\\ &=\left(\sqrt{\sum_i\|\alpha_i\|^2}-\sqrt{\sum_i\|\beta_i\|^2}\right)^2 \end{align}$$

Now we are going to prove the main result:

Theorem 1

All quantum algorithms that find a solution with $O(1)$ probability requires $\Omega\left(\sqrt{\frac NM}\right)$ oracle queries.

Proof of Theorem 1

Without loss of generality, we may assume that the quantum algorithm uses $m$ qubits for some $m>n$. It applies $W$ unitary operations, interleaved with $W$ oracle operations. More specifically, let $|\psi\rangle$ be the initial state of the register, we compute $|\psi_W^R\rangle:=U_WO_RU_{W-1}O_R\cdots U_1O_R|\psi\rangle$, and then measure the first $n$ qubits of $|\psi_W^R\rangle$ as an answer. We may assume that the oracle queries are done on the first $n$ qubits, and the result is XORed with the $(n+1)$'th qubit. (Otherwise we can "swap" the queried qubits with the first $(n+1)$ qubits, and then swap them back after the query, as there is no limit on the unitary operations we apply.)

We define $$\begin{align} |\psi_k^R\rangle&:=U_kO_RU_{k-1}O_R\cdots U_1O_R|\psi\rangle\\ |\psi_k\rangle&:=U_kU_{k-1}\cdots U_1|\psi\rangle\\ D_k&:=\sum_{R\subset S}\left\|\psi_k^R-\psi_k\right\|^2 \end{align}$$

Upperbound of $D_W$

For the first half of the proof, we upperbound $D_k$ by $4k^2\binom{N-1}{M-1}$ using induction:

$$\begin{align} D_{k+1} &=\sum_{R\subset S}\left\|U_{k+1}O_R\psi_k^R-U_{k+1}\psi_k\right\|^2\\ &=\sum_{R\subset S}\left\|O_R\psi_k^R-\psi_k\right\|^2\\ &=\sum_{R\subset S}\left\|O_R(\psi_k^R-\psi_k)+(O_R-I)\psi_k\right\|^2\\ \end{align}$$

Notice that $O_R$ and $I$ can be written as $$\begin{align} O_R&=\sum_{x\notin R}|x\rangle\langle x|\otimes I\otimes I+\sum_{x\in R}|x\rangle\langle x|\otimes X\otimes I\\ I&=\sum_{x\notin R}|x\rangle\langle x|\otimes I\otimes I+\sum_{x\in R}|x\rangle\langle x|\otimes I\otimes I \end{align}$$

Therefore we have $$\begin{align} D_{k+1} &=\sum_{R\subset S}\left\|O_R(\psi_k^R-\psi_k)+\left(\sum_{x\in R}|x\rangle\langle x|\otimes(X-I)\otimes I\right)\psi_k\right\|^2 \end{align}$$

To apply Lemma 1, we upper bound the first term:

$$\begin{align} \sum_{R\subset S}\left\|O_R(\psi_k^R-\psi_k)\right\|^2 &=\sum_{R\subset S}\left\|(\psi_k^R-\psi_k)\right\|^2\\ &=D_k\\ \end{align}$$

and the second term:

$$\begin{align} &\sum_{R\subset S}\left\|\left(\sum_{x\in R}|x\rangle\langle x|\otimes(X-I)\otimes I\right)\psi_k\right\|^2\\ &=\sum_{R\subset S}\sum_{x\in R}\langle\psi_k|(|x\rangle\langle x|\otimes(2I-2X)\otimes I)|\psi_k\rangle\\ &=2\binom{N-1}{M-1}\sum_{x\in S}\langle\psi_k|(|x\rangle\langle x|\otimes(I-X))|\psi_k\rangle\\ &=2\binom{N-1}{M-1}(\langle\psi_k|\psi_k\rangle-\langle\psi_k|I\otimes X\otimes I|\psi_k\rangle)\\ &\le4\binom{N-1}{M-1} \end{align}$$

By induction, $D_k\le4k^2\binom{N-1}{M-1}$, and with Lemma 1 we conclude that $$\begin{align} D_{k+1} &\le\left(2k\sqrt{\binom{N-1}{M-1}}+2\sqrt{\binom{N-1}{M-1}}\right)^2\\ &=4(k+1)^2\binom{N-1}{M-1} \end{align}$$

Lowerbound of $D_W$

For the second half of the proof, we lowerbound $D_k$ by $\Omega(1)\binom NM$. First, we define the projection matrix onto the subspace spanned by the solutions $R$:

$$\begin{align} P_R:=\sum_{x\in R}|x\rangle\langle x|\otimes I \end{align}$$

Then again, we split $D_W$ into two parts, and try to apply Lemma 1:

$$\begin{align} D_W &=\sum_{R\subset S}\left\|(I-P_R)\psi_W^R+(P_R\psi_W^R-\psi_W)\right\|^2\\ \end{align}$$

For the first term, we have $\langle\psi_W^R|(I-P_R)|\psi_W^R\rangle\le\frac12$, as we may assume that the probability of success is no less than $\frac12$ for this quantum algorithm. Thus we write down

$$\begin{align} \sum_{R\subset S}\left\|(I-P_R)\psi_W^R\right\|^2\le\frac12\binom NM \end{align}$$

For the second term, we have

$$\begin{align} \left\|P_R\psi_W^R-\psi_W\right\|^2 &=1+\langle\psi_W^R|P_R|\psi_W^R\rangle-2\Re\langle\psi_W|P_R|\psi_W^R\rangle\\ &\ge\frac32-2\|P_R\psi_W\|^2\\ &=\frac32-2\langle\psi_W|P_R|\psi_W\rangle\\ \end{align}$$

Summing over $R$,

$$\begin{align} \sum_{R\subset S}\left\|P_R\psi_W^R-\psi_W\right\|^2 &\ge\frac32\binom NM-2\sum_{R\subset S}\sum_{x\in R}\langle\psi_W|(|x\rangle\langle x|\otimes I)|\psi_W\rangle\\ &=\frac32\binom NM-2\binom{N-1}{M-1}\sum_{x\in S}\langle\psi_W|(|x\rangle\langle x|\otimes I)|\psi_W\rangle\\ &=\frac32\binom NM-2\binom{N-1}{M-1}\\ &=\left(\frac32-2\frac MN\right)\binom NM \end{align}$$

We may assume that $\frac MN\le\frac14$. (In fact, for $\frac MN>\frac 14$, the problem is trivial as one only needs less than 4 trials on average using a naive algorithm.) We then apply Lemma 1:

$$\begin{align} D_W &\ge\left(\sqrt{\frac32-2\frac MN}-\sqrt{\frac12}\right)^2\binom NM\\ &\ge\left(\frac32-\sqrt2\right)\binom NM \end{align}$$

Combining the lowerbound and upperbound of $D_W$, we have

$$\begin{align} &\left(\frac32-\sqrt2\right)\binom NM\le D_W\le4W^2\binom{N-1}{M-1}\\ &\implies W\ge\frac{2-\sqrt2}4\sqrt{\frac NM}\\ &\implies W\ge\Omega\left(\sqrt{\frac NM}\right) \end{align}$$

Which completes our proof.