7

Consider an $ ((n,K=2^k,d)) $ non-stabilizer code. The weight enumerator coefficients are $$ A_j:=\frac{1}{(2^k)^2} \sum_{p \in P_n,\,\mathrm{wt}(p)=j} |\mathrm{tr}(p \Pi)|^2 $$ where $ \Pi $ is the projector onto the code subspace.

Are the $ A_j $ always integers?

For stabilizer codes this is true see Are the coefficients of the weight enumerator polynomial of a stabilizer code always integers?

Is it the case that the $ A_j $ are always integers for non-stabilizer codes as well? If not, what is an example of a non-stabilizer code with $ A_j $ not integers?

1 Answers1

3

No. Weight enumerators with the given normalization are not necessarily integers for non-stabilizer codes. In fact, the first discovered non-stabilizer code provides a counterexample. However, the logical subspace of that code is six-dimensional. See this paper for a $(\!(11,2)\!)$ code which is a counterexample encoding a logical qubit (thank you to Ian Gershon Teixeira for pointing out this paper).

$(\!(5,6)\!)$ counterexample

The first discovered non-stabilizer code is defined by the following projector $$ \begin{align} \Pi=\frac{1}{16}[ \,3\,&I\otimes I\otimes I\otimes I\otimes I\\ +\,&(I\otimes Z\otimes Y\otimes Y\otimes Z)_{\text{cyc}}\\ +\,&(I\otimes X\otimes Z\otimes Z\otimes X)_{\text{cyc}}\\ -\,&(I\otimes Y\otimes X\otimes X\otimes Y)_{\text{cyc}}\\ +2\,&(Z\otimes X\otimes Y\otimes Y\otimes X)_{\text{cyc}}\\ -2\,&Z\otimes Z\otimes Z\otimes Z\otimes Z] \end{align}\tag1 $$ where the subscript "cyc" indicates the presence of all five cyclic shifts. We have $$ \begin{align} A_4&=\frac{1}{(2^{\log_2 6})^2}\sum_{p\in P_5,\mathrm{wt}(p)=4}\mathrm{tr}(p\Pi)^2\tag2\\ &=\frac{1}{6^2}\frac{1}{16^2}(5+5+5)\,\mathrm{tr}(I\otimes I\otimes I\otimes I\otimes I)^2\tag3\\ &=\frac{15}{6^2}\frac{32^2}{16^2}=\frac{5}{3}.\tag4 \end{align} $$ Admittedly, this code does not match the parameters of the question exactly since its logical subspace is six-dimensional.


$[\![4,2]\!]$ is not a counterexample

Let $C$ denote the joint $+1$ eigenspace of $Y^{\otimes 4}$ and $H^{\otimes 4}$. Any single-qubit Pauli error anti-commutes with one of the two operators, so $C$ is a code that can detect all single-qubit Pauli errors. The projector is $$ \begin{align} \Pi&=\frac{I^{\otimes 4}+Y^{\otimes 4}}{2}\frac{I^{\otimes 4}+H^{\otimes 4}}{2}\tag5\\ &=\frac14[I^{\otimes 4}+Y^{\otimes 4}+H^{\otimes 4}+Y^{\otimes 4}H^{\otimes 4}]\tag6\\ &=\frac14\left[I^{\otimes 4}+Y^{\otimes 4}+\frac14(X+Z)^{\otimes 4}+\frac14Y^{\otimes 4}(X+Z)^{\otimes 4}\right]\tag7 \end{align} $$ where $(X+Z)^{\otimes 4}$ expands to the sum of all sixteen weight four Pauli strings consisting solely of $X$ and $Z$. Let us denote this set with $Q_n=\{P\in P_n\,|\,\mathrm{wt}(p)=n\wedge\mathrm{wt}_Y(p)=0\}$ where $\mathrm{wt}_Y(p)$ denotes the number of qubits on which $p$ acts as $Y$. Now, $YX=-iZ$ and $YZ=iX$,so $$ \begin{align} \Pi&=\frac14\left[I^{\otimes 4}+Y^{\otimes 4}+\frac14(X+Z)^{\otimes 4}+\frac14Y^{\otimes 4}(X+Z)^{\otimes 4}\right]\tag7\\ &=\frac{1}{16}\left[4I^{\otimes 4}+4Y^{\otimes 4}+\sum_{q\in Q_4} q+Y^{\otimes 4}\sum_{q\in Q_4} q\right]\tag8\\ &=\frac{1}{16}\left[4I^{\otimes 4}+4Y^{\otimes 4}+\sum_{q\in Q_4} q+\sum_{q\in Q_4} (-1)^{\mathrm{wt}_Z(q)}q\right]\tag9\\ &=\frac{1}{16}\left[4I^{\otimes 4}+4Y^{\otimes 4}+2\sum_{r\in R_4} r\right]\tag{10}\\ \end{align} $$ where $$ \begin{align} R_4=\{ &XXXX, ZZZZ,\\ &XXZZ, ZZXX,\\ &XZXZ, ZXZX,\\ &ZXXZ, XZZX\}\tag{11} \end{align} $$ is the set of all eight four-qubit Pauli strings made up of an even number of $X$, an even number of $Z$ and no identity or $Y$. Having found the expansion of the code subspace projector in the Pauli basis, we are ready to compute weight enumerators $$ \begin{align} A_4&=\frac{1}{(2^2)^2}\sum_{p\in P_4,\mathrm{wt}(p)=4}\mathrm{tr}(p\Pi)^2\tag{12}\\ &=\frac{1}{4^2}\frac{1}{16^2}(4^2+8\cdot 2^2)\,\mathrm{tr}(I\otimes I\otimes I\otimes I)^2\tag{13}\\ &=\frac{48}{4^2}\frac{16^2}{16^2}=3\tag{14} \end{align} $$ where we used $k=2$ which follows from $\mathrm{tr}(\Pi)=4$.

Adam Zalcman
  • 25,260
  • 3
  • 40
  • 95