I found it odd that the result of the action of identity gate (namely a $2\times2$ identity matrix) on a pure state $|0\rangle$ (namely the vector corresponding to the $2\times1$ matrix $\begin{bmatrix} 1\\0 \end{bmatrix}$) becomes a $2\times2$ matrix $\begin{bmatrix} 1+0\cdot i&0+0\cdot i\\0+0\cdot i&1+0\cdot i \end{bmatrix}=\begin{bmatrix} 1&0\\0&1 \end{bmatrix}$ as I found it HERE (QISKit tutorial page):

Also, when one lets for more precision, the result gets odd:
Why is this? The same thing happens for other gates listed on the page referenced above.
