In Nielsen's book, the Kraus operator can be attained by trace out the enviroment: $$\operatorname{Tr}_{\rm env}[\hat{U}(|\psi\rangle\otimes|0\rangle)(\langle\psi|\otimes\langle 0|)\hat{U}^\dagger]. $$ And hence we can define the Kraus operator as $\Pi_l = \langle l|\hat{U}|0\rangle$.
But why can we write the total state $|\Psi\rangle=\hat{U}(|\psi\rangle\otimes| 0\rangle)$ as $|\Psi\rangle = \sum_l(\Pi_l|\psi\rangle)\otimes|l\rangle$?