With the Quantum Oracle $|x \rangle \xrightarrow{f_s} (-1)^{s\cdot x} |x \rangle$ (between the Hadamard sandwich) for the BV algorithm, with ($n$-bit) input secret bits $s$, here is what it does:
$|00\dots 0\rangle \xrightarrow{H^{\otimes n}} \frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} |x\rangle \xrightarrow{f_s} \frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} (-1)^{s\cdot x}|x\rangle \xrightarrow{H^{\otimes n}} |s\rangle$
When $s=00\ldots0$, $(-1)^{s.x}=(-1)^0=1$, s.t. the orale $f_s$ become an identity operator, as can be seen from above:
$\frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} |x\rangle \xrightarrow{f_\textbf{0}} \frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} (-1)^{\textbf{0}\cdot x}|x\rangle$,
i.e.,
$\frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} |x\rangle \xrightarrow{f_\textbf{0}} \frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} |x\rangle$,
so that the oracle is an identity mapping (transformation) and it has to do nothing.
We need to have a $CNOT$ gate whenever there is a $1$ bit in the secret bits in the Oracle, in order to introduce phase-kickback at the query bits, but don't have to do anything where the secret bit is $0$, which can be seen from below.
$|0\rangle \xrightarrow{H} |+\rangle$
phase kickback: $|+ \rangle \otimes |- \rangle \xrightarrow{CNOT} |- \rangle \otimes |-\rangle$, with $|+\rangle$ as the control qubit
$|-\rangle \xrightarrow{H} |1\rangle$
Hence, when $s=111\ldots 1$, we have the oracle as
$\frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} |x\rangle \xrightarrow{f_\textbf{1}} \frac{1}{\sqrt{2^n}} \sum\limits_{x\in \{0,1\}^n} (-1)^{\textbf{1}\cdot x}|x\rangle$,
and we need to have $CNOT$ gates for all the secret bits in the oracle.