Can anyone explain why the $l_1$ distance has the property that probability distributions $P,Q$ with orthogonal support (meaning that the product $p_iq_i$ vanishes for each value of $i$) are at a maximal distance from each other? Consider $$ \|P-Q\|_1=\frac{1}{2}\sum_{i=1}^{N}|p_i-q_i|$$
1 Answers
Note that if $p_{i}q_{i} = 0\,\,\forall i$, then for all $i$ either $p_{i} = 0$, $q_{i} = 0$, or both are $0$.
Divide $\{i\} = \{1,\ldots,N\}$ into those $i$ for which these three different things happen: $\{N_{p_{i}}\} = \{i|p_{i} = 0\}$, $\{N_{q_{i}}\} = \{i|q_{i} = 0\}$, $\{N_{pq_{i}}\} = \{i|p_{i} = q_{i} = 0\}$.
Then \begin{equation} \begin{split} \|P-Q\|_{1} =& \frac{1}{2}\sum_{i=1}^{N}|p_{i}-q_{i}| \\ =& \frac{1}{2}\sum_{i\in N_{p_{i}}}|p_{i}-q_{i}| + \frac{1}{2}\sum_{i\in N_{q_{i}}}|p_{i}-q_{i}| + \frac{1}{2}\sum_{i\in N_{pq_{i}}}|p_{i}-q_{i}| \\ =& \frac{1}{2}\sum_{i\in N_{p_{i}}}|q_{i}| + \frac{1}{2}\sum_{i\in N_{q_{i}}}|p_{i}| + \frac{1}{2}\sum_{i\in N_{pq_{i}}}|0| \\ =& \frac{1}{2}\Big(\sum_{i \in \{N\}}q_{i} + \sum_{i \in \{N\}} p_{i}\Big) = 1, \end{split} \end{equation}
where the last line follows from the fact that $$ 1 = \sum_{i\in \{N\}}|q_{i}| = \sum_{i\in N_{p_{i}}}|q_{i}| + \sum_{i\in N_{q_{i}}}|q_{i}| + \sum_{i\in N_{pq_{i}}}|q_{i}| = \sum_{i\in N_{p_{i}}}|q_{i}| + 0 + 0 = \sum_{i\in N_{p_{i}}}|q_{i}|, $$ and likewise for $\sum_{i}p_{i}$. That is, we can add these other terms of $q_{i}$ ($p_{i}$) because they are $0$ by construction anyway.
This is the maximum value that $\|P-Q\|_{1}$ can take for any $P$ and $Q$, because $|p_{i} - q_{i}| \leq |p_{i}| + |-q_{i}| = p_{i} + q_{i}$ for any $p_{i},q_{i}$ imaginable, and as such:
$$ \|P-Q\|_{1} = \frac{1}{2}\sum_{i=1}^{N}|p_{i}-q_{i}| \leq \frac{1}{2}\big(\sum_{i=1}^{N}p_{i}+q_{i}\big) = \frac{1}{2}\sum_{i=1}^{N}p_{i} + \frac{1}{2}\sum_{i=1}^{N}q_{i} = \frac{1}{2}+\frac{1}{2} = 1 $$
- 25,260
- 3
- 40
- 95
- 5,819
- 15
- 36