Let $\rho \in \mathfrak{D}(A)$ be a density matrix. Show that $|\psi^{A B}\rangle \in A B$ and $|\phi^{A C}\rangle \in A C$ (assuming $|B| \leq|C|)$ are two purifications of $\rho \in \mathfrak{D}(A)$ if and only if there exists an isometry $V: B \to C$ such that $$ |\phi^{A C}\rangle=(I^{A} \otimes V)|\psi^{A B}\rangle $$
My attempt:
I first prove $\Rightarrow$ so I assume that $|\psi^{A B}\rangle \in A B$ and $|\phi^{A C}\rangle \in A C$ (assuming $|B| \leq|C|)$ are two purifications of $\rho \in \mathfrak{D}(A)$. We can write $|\psi^{A B}\rangle $ and $|\phi^{A C}\rangle $ as follows \begin{equation} \begin{aligned} &|\psi\rangle^{A B}=\sum_{x=1}^{|A|}|x^{A}\rangle\Big(\sum_{y=1}^{|B|} m_{x y}|y^{B}\rangle\Big)\\ &|\psi\rangle^{A C}=\sum_{z=1}^{|A|}|z^{A}\rangle\Big(\sum_{w=1}^{|C|} m^{\prime}_{z w}|w^{C}\rangle\Big) \end{aligned} \end{equation} So then we can write them as follows \begin{equation} \begin{aligned} &|\psi\rangle^{A B}=(I \otimes M)|\phi_{+}^{A \tilde{A}}\rangle\\ &|\psi\rangle^{A C}=(I \otimes M^{\prime})|\phi_{+}^{A \tilde{A}}\rangle\\ \end{aligned} \end{equation} with $M: H^{\tilde{A}} \to H^{B}$, $M^{\prime}: H^{\tilde{A}} \to H^{C}$ and \begin{equation} \begin{aligned} &M|x\rangle^{\tilde{A}}:=\sum_{y=1}^{|B|} m_{xy}|y^{B}\rangle \quad \text{and} \quad M^{\prime}|z\rangle^{\tilde{A}}:=\sum_{w=1}^{|c|} m^{\prime}_{zw}|y^{C}\rangle \\ &|\phi_{+}^{\tilde{A} A}\rangle:=\sum_{x=1}^{|A|} |xx\rangle^{\tilde{A} A}\\ \end{aligned} \end{equation} Now we want $|\psi\rangle^{A B}$ and $|\psi\rangle^{A c}$ to be purification of $\rho \in \mathfrak{D}(A)$. So according to the definition, we should have \begin{equation} \begin{aligned} &\psi^{A}=MM^{*}=M^{\prime}(M^{\prime})^{*}=\rho \\ \end{aligned} \end{equation} And we assume $M^{\prime}=VM$, so we can write \begin{equation} \begin{aligned} &M^{\prime}(M^{\prime})^{*}=VMM^{*}V^{*}=V\rho V^{*} \end{aligned} \end{equation} Now, what should I do? Is my procedure correct?
Note: We know that $|\phi^{A B}\rangle=I^{A} \otimes M |\Phi^{A \tilde{A}}\rangle$ is called a purification of $\rho$ if reduced density matrix $\psi^A$ \begin{equation} \begin{aligned} &\psi^A := M M^* \in {\rm Pos}(A) \end{aligned} \end{equation} is equal to our density matrix $\rho$. And \begin{equation} \begin{aligned} &|\phi_{+}^{\tilde{A} A}\rangle:=\sum_{x=1}^{|A|} |xx\rangle^{\tilde{A} A} \end{aligned} \end{equation} at the end I should mention that $\tilde{A}$ is the same as $A$.