I am trying to derive the Bloch vector $dr$ for a measurement of a observable in an arbitrary direction $\theta$. For context this is the setup and derivation I have for continuous measurement along the $z$ axis.
The equation of continuous measurement on observable X has the following form: $$\frac{d \rho}{d t}=\mathcal{D}[X] \rho+\sqrt{\eta} \mathcal{H}[X] \rho \xi(t)$$ where \begin{align*} \mathcal{D}[X] \rho&=X \rho X^{\dagger}-\frac{1}{2}(X^{\dagger} X \rho+\rho X^{\dagger} X)\\ \mathcal{H}[X] \rho&=X \rho+\rho X-\operatorname{tr}(( X+X^{\dagger})\rho) \rho \end{align*} and $\kappa$ is the measurement strength. Using the Bloch Vector form, i.e. $\rho=\frac{1}{2}(I+x \sigma_{x}+y \sigma_{y}+z \sigma_{z})$, then, \begin{align*} \mathcal{D}[X] \rho&=2 \kappa(\sigma_{z} \rho \sigma_{z}-\rho)\\ \mathcal{H}[X] \rho&=\sqrt{2 \kappa}(\sigma_{z} \rho+\rho \sigma_{z}-2 \operatorname{tr}(\sigma_{z} \rho) \rho) \end{align*} To find $\dot x$ we compute \begin{align*} \frac{d x}{d t}&=\frac{d \operatorname{tr}(\sigma_{x} \rho)}{d t}\\ &=2 \kappa(\operatorname{tr}(\sigma_{z} \sigma_{x} \sigma_{z} \rho)-x)+\sqrt{2 \kappa \eta}(\operatorname{tr}((\sigma_{x} \sigma_{z}+\sigma_{z} \sigma_{x}) \rho)-2 x z) \xi(t)\\ &=-4 \kappa x-\sqrt{8 \kappa \eta} x z \xi(t) \end{align*} and similarly for $\dot z$ \begin{align*} \frac{d z}{d t}&=\frac{d \operatorname{tr}(\sigma_{z} \rho)}{d t}\\ &=2 \kappa(\operatorname{tr}(\sigma_{z}^{2} \rho \sigma_{z})-\operatorname{tr}(\sigma_{z} \rho))+\sqrt{2 \kappa \eta}(\operatorname{tr}(\sigma_{z}^{2} \rho+\sigma_{z} \rho \sigma_{z})-2 z \operatorname{tr}(\sigma_{z} \rho)) \xi(t)\\ &=\sqrt{8 \kappa \eta}(1-z^{2}) \xi(t) \end{align*} Now I am trying to find $\dot x,\dot z$ for the case where $X = \cos(\theta )\sigma _z+\sin(\theta )\sigma_x$ along the measurement angle $\theta$:
$$\mathcal{D}[X] \rho=X \rho X^{\dagger}-\frac{1}{2}(X^{\dagger} X \rho+\rho X^{\dagger} X)= \cos^2(\theta )\sigma _z\rho \sigma _z+\sin^2(\theta )\sigma _x\rho \sigma _x$$
I am confused on what the simplified form of $\mathcal{H}[X]\rho$ will be as my simplification skills are not very strong
I would also need help in finding $\frac{d \operatorname{tr}(\sigma_{x} \rho)}{d t}$ and $\frac{d \operatorname{tr}(\sigma_{z} \rho)}{d t}$ with the $\sin$ and $\cos$ terms like the above simplification.