Just noticed you also asked for the representation of the Dirac $\gamma$-matrices. Given a conjugate representation of the Grassmann numbers such that
$\{\theta_i,\pi_j\} = \delta_{ij}, \quad \{\pi_{i},\pi_{j}\} = 0$
with $i=1,...,N$ then a $2N$-dimensional Clifford algebra can be built by
$\gamma_{i}=\theta_{i}+\pi_{i}\\
\gamma_{N+i}=i(\theta_{i}-\pi_{i})$
It is then straightforward to verify that $\{\gamma_{i},\gamma_{j}\}=2\delta_{ij}\mathbf{1}$. For a odd number of dimensions the last $\gamma$-matrix can be found by considering the product
$\gamma_{2N+1} = i^N\prod_{i=1}^{2N}\gamma_{i} = i^N\gamma_{1}\gamma_2...\gamma_{2N}$
To get a representation of the Dirac algebra $\{\gamma_{\mu},\gamma_\nu\}=2g_{\mu\nu}\mathbf{1}$ with signature (+,-,-,...,-) simply rotate all but one of the matrices such that $\gamma_i\to i\gamma_i$ (and relabel a bit).
To give an explicit example, consider the representation of the two Grassmann numbers above. The conjugate representation is then
$\pi_1=\left[\begin{matrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{matrix}\right]\\
\pi_2=\left[\begin{matrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{matrix}\right]$
which leads to the 4-dimensional representation of the Dirac algebra (rotating $i=1,2,3$ and relabeling $\gamma_4 \to \gamma_0$)
$\gamma_0=\left[\begin{matrix}
0 & 0 & -i & 0 \\
0 & 0 & 0 & i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{matrix}\right],\quad
\gamma_1=\left[\begin{matrix}
0 & i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
0 & 0 & i & 0
\end{matrix}\right], \quad
\gamma_2=\left[\begin{matrix}
0 & 0 & i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{matrix}\right]\\
\gamma_3=\left[\begin{matrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{matrix}\right], \quad \gamma_{5} =\left[\begin{matrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{matrix}\right]$
Notice that a five dimensional representation is recovered if $\gamma_5 \to i\gamma_5$.
Unfortunately the explicit representation found coincides with neither the Weyl nor the Dirac basis (does not really matter though - it is still a valid representation).